
AOSS 166 SYRACUSE UNIV N Y DEPT OF INDUSTRIAL ENGINEERING AND-.ETC F/G 12/1
TIME DEPENDENT ERROR DETECTION RATE MODEL FOR SOFTWARE PERFOR-.ETC(U)

MAY 80 A L GOEL, K OKUIOTO F30602 7 -C0351

WNLASSIF RED RADC-TR- -179 NL

Biuuuunnnuuun
Biunnuunuuuunu
-EEIIEEEIIIE
-IEEE'-...II
IIIIIIIuumuImuuuuIinI

IIII - '° ~

*011111205

,1 111112----011111 -1.1 iII

* 111125-111111.4

MICROCOPY RESOLUTION TEST CHART

RADC-TR40-179
Interim Report

May 1980

SA TIME DEPENDENT ERROR
CO DETECTION RATE MODEL FOR
G SOFTWARE PERFORMANCE
0 ASSESSMENT WITH APPLICATIONS

0 Syracuse University

C Amrit L. Goel
K. Okumoto

[APPOVED FOR PUBLIC RELEASE; DISTMiBUTION UNUMITD

DTIC
AfEL7-CTESAUG 20 198 .jJ

ROME AIR DEVELOPMENT CENTER A
Air Force Systems Command

~ GrIffiss, Air Force Base, New York 13441

,ROS

This report has been reviewed by the RADC Public Affairs Office (PA)
and is releasable to the National Technical Information Service (WTIs).
At NTIS it will be releasable to the general public, including fore.Ig
nations.

RADC-TR-80-179 has been reviewed and is approved for publication.

APPROVED:

ALAN N. SUKERT
Project Engineer

APPROVED:

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE CO10:AMAER:

JOHN P. RUOSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organue-
tion, please notify RADC (ISIS), Griffiss AFB NY 13441. This will assist
us in maintaining a current mailing list..

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W"e. Date Ent) __________________

T READ INSTRUCTIONS
REPO DOCMENTTIONPAGEBEFORE COMPLETING FORM

1 OVT ACC5SION~ NQ REINTS CATALOG NUMBER

IIEEDNTROPTETO~3T ri J h ec nical epgJt)
#ODL OR OFWAR PRFRMANCE4#SSESSMENTi Se 78- Oct 792 ,

IT APPICAIONS....... -ERFORMING 01G. ftRT NUMBER

)a !ntK:. 0 Euo t)

9. PERFORMING ORGANIZATION NAME AN ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Syracuse Univyee&" A)7 AREA & WORK UNINUBR

Syrcus N 1310558 015 _

f4. MONITORING AGENCY NAME & AOORESS(if different from Controling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

IS.. DECLASSI FICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered i~n Block. 20. it different from Report)

Same

I6. SUPPLEMENTARY NOTES

RADC Project Engineer: Alan N. Sukert (ISIS)

19. KEY WORDS (Contifnue on favYrsaC side itnfecoa~ary, and idetfy by bJock numbe,)
Non-Homogeneous Poisson Process
Software Reliability
Software Error Models
Software Performance Assessment

20. ABSTRACT (Continue on reverse side if necesary and identify by block number)

This report presents the results of the software performance modelling
task pursued under Contract No. F30602-78-C-0351 during the period
September 1978 - October 1979.

-The objective of this study was to develop a parsimonious model whose
parameters have a physical interpretation, and which can be used to
predict various quantitative measures for software performance (Cont'd)

JAN 7. 1473 EDITION OF I NOV GS IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF TIS PAGE (When Dte Entered) 7!

UNCLASSIFIED

SECURITY CLASIFICATIOM OF THIS PAGE(Whu flat Entsrd)

Item 20 (Cont'd)

_assessment. With this objective, the behavior of the software failure
counting process (N(t), t O) has been studied. It is shown that

N(t) can be well describea by a non-homogeneous Poisson process (NHPP)
with a two parameter exponentially decaying error detection rate.
Several measures, such as the number of failures by some prespecified

time, the number of errors remaining in the system at a future time,
and software reliability during a mission, have been proposed in this
report. Models for software performance assessment are also derived.

Two methods are developed to estimate model parameters from either

failure count data or times between failures. A goodness-of-fit test
is also developed to check the adequacy of the fitted model.

Finally, actual failure data. are analyzed from two DOD software

systems. One is a large command and control system and the other a
Naval data analysis system.

UNCLASSIFIED

SECURITY CL ASSIFICA1ION Oft T-- PAGE$Wheft DAa 9"ta'E)

TABLE OF CONTENTS

1. INTRODUCTION AND BACKGROOND 1

1.1 Introduction 1

1.2 Purpose and Outline of the Report 5

2. MODEL DEVELOPMENT 7

2.1 Deterministic Analysis of Software Failure
Process 7

2.2 Stochastic Analysis of Software Failure Process . 10

3. MODELS FOR SOFTWARE PERFORMANCE ASSESSMENT 14

3.1 Number of Software Errors Detected by t 14
3.2 Number of Remaining Errors and Related Results. . . 15
3.3 Software Reliability. 17
3.4 Conditional Distribution of X kSk_1 20

3.5 Joint. Density of Waiting Times 21
3.6 Joint Counting Probability 22

4. ESTIMATION OF MODEL PARAMETERS FROM FAILURE DATA 23

4.1 Estimation When Cumulative Failures are Given . . . 25

4.1.1 Variance-Covariance and Confidence Region
for (a,b) 27

4.2 Estimation When Times Between Failures are Given. 31

5. GOODNESS-OF-FIT TEST 33

6. GENERAL METHODOLOGY FOR SOFTWARE FAILURE DATA ANALYSIS 37

lccessi n For

*1 . . .

7. ANALYSIS OF FAILURE DATA FROM A LARGE SCALE SOFTWARE
SYSTEM 41

7.1 Failure Data 41
7.2 Estimation of Parameters 46
7.3 Goodness-of-fit Test_ .. 48
7.4 Confidence Reyions for (a,b). 52
7.5 Variance-covariance Matrix. 55
7.6 Nuiber of Remaining Errors 56
7.7 Software Reliability 58
7.8 Summary of Analyses for DSI to DS4. 60

8. ANALYSIS OF FAILURE DATA FROM NAVAL TACTICAL DATA
SYSTEM (NTDS). 62

9. A COMPARISON OF NTDS DATA ANALYSES USING THE NHPP AND
THE DE-EUTROPHICATION MODELS 74

10. CONCLUSIONS 84

REFERENCES 86

APPENDIX A. 92

4i

_ .

LIST OF TABLES

Table Page

7.1 Software Project Characteristics 42

7.2 Description ofthe Data Sets 44

7.3 Software Data Sets DS1 to DS4 45

7.4 Data for Kolmogorov-Smirnov Test (Data Set DSl) . .. 49

7.5 A Summary of Data Anhlyses.................61

8.1 Software Failure Data From NTDS 63

8.2 Kolmogorov-Smirnov Test for the NTDS Data Set .. . 68

9.1 Comparison of Results Based on the NHiPP and the
De-Eutrophication Models................. 78

A.1 A Summary of the Software Reliability Models
Based on Time Between Failures................97

LIST OF FIGURES

Figure Page

1.1 Classification of Software Reliability Models . . . 4

2.1 A Graphical Representation of the Deterministic

Model for Software Failures 8

6.1 Flowchart for Software Fdilure Data Analysis. . . . 38

7.1 Actual and Expected Cumulative Number of Failures
and 90% Confidence Bounds for the N(t) Process for
Data Set DSl 47

7.2 95% Confidence Bounds for the Conditional c.d.f.

G(ti) and the Fitted Curve for DSI Data 51

7.3 Joint Confidence Regions for a and b for Data
Set DS. 53

7.4 Expected Number of Remaining Software Errors and
Related Quantities for Various t (Data Set DSl). . 57

7.5 Reliability and 90% Confidence Bounds After 15
Weeks of Testing 59

8.1 Log-Likelihood Surface Based on NTDS Data 65

8.2 Plots of Mean Value Function and 90% Confidence

Bounds for the N(t) Process (NTDS Data) 67

8.3 95% Confidence Bounds for the Conditional c.d.f.

G(x) and the Fitted CID.F. Curve (NTDS Data). . .. 70

8.4 Joint Confidence Regions for a and b (NTDS Data). 72

9.1 Plots of the NTDq Data and the Estimated Mean

Value Functions M N(t) and m(t) 77

9.2 Joint Confidence Regions for N and p (NTDS Data). 81

9.3 Plots of Reliability Functions Based on NHPP and
De-Eutrophication Models, 83

iv

1. INTRODUCTION AND BACKGROUND

1.1 Introduction

Continued increase in the complexity and use of computer

systems in a wide variety of applications, especially during the

last decade, has necessitated a greater emphasis on the development

of cost-effective and reliable software. The importance of soft-

ware has been further enhanced by the fact that the ratio of soft-

ware to hardware costs continues to grow as technological advances

keep reducing the hardware Cost. This has led to the evolution of

a new discipline called software engineering (Reference 6). This

discipline is still in its infancy and has been described as the

practical application of scientific knowledge to produce software

in a way that is cost-effective and reliable.

The performance of a software system is dependent on the

tools and techniques used during its development and operation.

An important performance criterion is the nature and frequency of

software failures. A failure is said to occur when a fault, a

specific manifestation of an error, in the program is evoked by

some input data resulting in the computer program not correctly

computing the required funttion. A software error is a conceptual,

syntactical, or clerical discrepancy which results in one or more

faults in the software. It should be noted that these definitions

are controversial and not uniformly accepted. To be consistent

with the existing literature, in this report the terms error ana

failure are used interchangeably, except where indicated otherwise.

1m

Several empirical studies of software failure phenomena have

been undertaken in recent years with the objective of improving

software performance. Such studies can be classified into one (or

both) of two categories. In the first category the emphasis is

on the analysis of software error data collected from small or

large projects (References 17, 22, 43, 56, 67, 70), during develop-

ment and/or operational phases. Studies in the second category

are primarily aimed at the development of analytical models

(References 7, 14, 24, 25, 26, 28, 31, 36, 46, 58, 60, 61, 66, 69,

71).

A number of software reliability models have been proposed

and investigated during the last seven years to describe the

stochastic behavior of the software failure process and to esti-

mate the number of software errors remaining in the system. We

classify these models into two major categories. The first one

emphasizes the stochastic nature of software failures, while the

second approach uses combinatorial analysis to provide measures

of software reliability.

The basis of the first approach is the reliability theory

developed for hardware systems. Since the error detection rate

changes during the software development cycle, the models have

been modified to incorporate this feature of the software failure

phenomenon. The time between failures is usually assumed to be

exponential with a parameter that changes with the number of remain-

ing errors in this class of models (References 26, 31, 46, 58, 61).

Some work has been done using a Bayesian approach (References 23,

36) in which the time to next failure is taken to be dependent on

2

the previous failure history. Software reliability has also been

modelled based on the number of errors found during the debugging

phase (Reference 34). Also of interest in this category are the

models for software availability (References 49, 50, 68).

As mentioned above, in the second approach software reli-

ability is measured using combinatorial analysis which includes

capture-recapture sampling (or error seeding) models and input

data domain models. The objective of capture-recapture sampling

is to determine the number of remaining errors in a computer pro-

gram by introducing (or seeding) errors and then using classical

statistical techniques for estimation. Computer systems are

initialized and exercised by a controlled input data set and the

reliability of the program is estimated by running the program for

all such possible input data sets. This is the input data domain

approach which has serious limitations from a practical viewpoint.

A classification of the above models is shown in Figure 1.1.

Each of these categories is described in more detail in Appendix A.

3

HZ5

CC

ULU)
0I
00

0I

<H H

w crj

it
0 ~u>

0)

4

1.2 Purpose and Outline of the Report

In this report our objective is to develop a parsimonious

model whose parameters have a physical interpretation, and which

can be used to predict various quantitative measures for software

performance assessment. Also of interest is the applicability of

the model over a broad class of projects. Further, it should be

possible to estimate the parameters of the model from available

failure data which could be given as either the number of failures

in specified time intervals or as times between software failures.

With this objective, we develop and investigate a non-

homogeneous Poisson process (NHPP) (Reference 9) model with a time

dependent error detection rate for the software failure phenomenon.

By studying the behavior of the counting process, fN(t) t t>0}, the

number of failures by time t , it is sho-vm in Section 2 that N (t)

can be well described by a non-homogeneous Poisson process (NiPP)

with a two parameter exponentially decaying error detection rate.

NHPP has been used by many researchers to describe random

phenomena in various applications (References 13, 15, 16). Some

such applications are the occurrences of coal mining disasters

(Reference 39); equipment failures (References 16, 32, 51); trans-

actions in a data-base system (Reference 33), and software error

counts over a series of time intervals (Reference 60). Various

forms of the intensity function for the NHPP used in actual appli-

cations are the exponential polynomial rate function (Reference 33),

a log-linear rate function (Reference 11) and a Weibull rate func-

tion (References 13, 15, 44).

5

Several measures for software performance assessment, such

as the number of errors remaining in the system, distribution of

time to next failure, and software reliability are proposed in

Section 3. Based on the NHPP model, expressions are then derived

for obtaining the estimates and confidence limits for these per-

formance measures.

Two methods are described in Section 4 for estimating the

parameters of the model from available failure data. The first

one is for the case when data is given in the form of number of

failures in given time intervals. The time intervals can be of

equal or unequal lengths. The second method is used when times

between software failures are given.

In Section 5, a method for testing the goodness-of-fit is

developed based on the Kolmogorov-Smirnov test. Expressions for

performing this test are also derived.

A general methodology for analyzing software failure data is

presented in Section 6. It gives a step by step procedure of analysis,

starting from raw data to the computation of useable performance

measures. This methodology is employed in Sections 7 and 8 to

give a detailed analysis of failure data from two software systems.

The first one (Section 7) is a large command and control system

while the second (Section 8) is a relatively small Naval Tactical

Data System (NTDS). A comparison of NTDS data analysis using the

N11PP and the De-Eutrophication process models is presented in

Section 9. Some concluding remarks, limitations and advantages of

the NHPP model are summarized in Section 10.

6

2. MODEL DEVELOPY"ENT

A software system in use is subject to failures caused by

errors present in the system. The errors are encountered when a

sequence of instructions is executed which, in turn, depends on the

input data set. In this section we develop a model to describe

this failure occurrence phenomenon.

2.1 Deterministic Analysis of Software Failure Process

It is useful to first make a simpler analysis by ignoring

the statistical fluctuations in the number of software failures

before analyzing the failure phenomenon as a stochastic process

(Reference 12). Let n(t) denote the cumulative number of software

failures detected by time t . Assume that n(t) is large enough

so that it can be expressed as a continuous function of t. Since

the number of errors in a system is a finite value, n(t) is a

bounded non-decreasing function of t with

n(O) = 0 and n(c) = a. (2.1)

For purposes of modeling we assume that the usage of the system is

basically similar over time. Then the number of failures in

(t,t+&t) is proportional to the number of undetected errors at t,

i.e.,

n(t+Lt) -n(t) = bfa-n(t)JAt , (2.2)

where b is a proportionality constant.

A graphical representation of the above description is pro-

vided in Figure 2.1.

7

n(1)

b [c-n U]
nn~t)

'_ n (t - Zt)-n (t)

, At

t Adtt+6

FIGURE 2.1 A GRAPHICAL REPRESENTATION OF
THE DETERM'vINISTIC MODEL FOR SOFT-
WARE FAILURES

8

Now, from Equation (2.2) we get the differential equation

n (t) = ab-bn' (t) . (2.3)

Taking the Laplace transform (References 1, 10) of Equation (2.3)

under the conditions of Eiuation (2.1), we have

si(s) = ab-bn(s)

or) - ab (2.4)or = s+b'

where

n(s) = soe-St- dn(t) . (2.5)

The solution of Equation (2.3) is thus obtained by inverting

Equation (2.4) and is given by

n(t) = a(l- e - b t) . (2.6)

Under the assumptions discussed above, Equation (2.6) is the

deterministic model of the software failure process. For given a

and b, we can easily compute the number of failures to be encountered

by some time t so that the failure phenomenon can be described with

certainty. It should be noted, however, that the actual failure

phenomenon is not deterministic.

9

2.2 Stochastic Analysis of Software Failure Process

In an actual usage the software system is subjected to random

inputs causing the failures to occur at random times, i.e., the

failure phenomenon is stochastic (non-deterministic). Therefore,

a realistic description of the failure process must incorporate

this randomness.

Let (N(t), t >0) be a counting process (References 52, 54, 62)

representing the cumulative number of failures by time t . (Note that

N(t) is a random variable while n(t) above was taken to be deterministic.'

Assuming that each failure is caused by one error, N(t) also repre-

sents the cumulative number of errors detected by time t. It should

be pointed out that a detected error may not be removed and as a

result may cause additional failure(s) at a later stage. For the

N(t) process, such recurrences are counted as new events.

Let m(t) be the mean value function of the N(t) process,

i.e.,

m(t) a E[N(t)] . (2.7)

Since m(t) represents the expected number of software failures

or detected errors by time t , it is a non-decreasing function of

t. If we assume that there will be a finite number of errors to

be detected in an infinite amount of time, m(t) has the following

boundary conditions:

0, t=0

m(t) = (2.8)
a, t

where a<w and represents the expected number of software errors

10

to be eventually detected. Furthermore, it is assumed that for

small bt the expected num)ber of software failures during (t,t+At)

is proportional to the expected number of software errors undetected

by time t, i.e.,

m(t+6t)- m(t) = b(a-m(t))At (2.9)

where b is a constant of proportionality. Solving the differential

equation obtained from Equation (2.9) under the boundary conditions

of Equation (2.8), we get

-b t
m(t) = a(l-e) . (2.10)

This equation specifies the mean value function for the underlying

software failure counting process N(t) . The intensity function,

obtained by taking the derivative of m(t) , represents the error

detection rate at time t and is given by

X(t) - m'(t) = abe- b t . (2.11)

We now study the probabilistic behavior of the N(t) process

by using m(t) and X(t) . Since there are no failures at t=0,

we have N(0) =0. It is also reasonable to assume that the number

of software failures during non-overlapping time intervals are

independent. In other words, for any finite collection of times

t1 <t 2 <... <tn, the n random variables N(t 1) , (N(t2)-N(t

(N(tn)-N(tn 1)) are statistically independent. This implies that

the counting process (N(t) , t>0) has independent increments.

1i

We assign the probabilities on the increments of the N(t)

process as follows.

0 with probability l-%(t)Lt+o(&t)

1 with probability x(t)Lt+o(&t)
N(t+&t)-N(t) = (2.12)

2 with probability o(6t)

where

o(At) , 0 as t-0.
ht

The underlying N(t) process satisfying conditions of Equation (2.12)

is now a NHPP with mean value function m(t) and intensity function

X(t) as given in Equations (2.10) and (2.11), respectively (Reterences

18, 19). Hence the distribution of N(t) is given by

PfN(t)=yj = (M(t e ,m(t) y=0,1,2,.... (2.13)

Under the assumptions discussed above, the stochastic behavior of

the software failure phenomenon can be completely described by

Equation (2.13). It should be pointed out that Equation (2.9)

implies that the ratio

Number of errors detected during (t,t+tt) = b (2.14)

(Numrber of errors undetected by t)&t

12

is constant at any time t. Therefore, b can be interpreted as

the error detection rate per error.

Equations (2.10) and (2.13) constitute the basic software

failure model under study in this report.

13

3. MODELS FOR SOFTWARE PERFORMANCE ASSESSMENT

The model developed in Section 2 is a description of the

failure phenomenon. In order to use this model to predict soft-

ware performance, we generally need expressions for quantitative

measures such as the number of failures by some prespecified time,

the number of errors remaining in the software at a future time,

and software reliability during a mission. In this section we

develop models that can be employed to estimate such quantities.

3.1 Number of Software Errors Detected by t

For given a and b the distribution of N(t), the cumula-

tive number of software failures detected by-time t, is obtained

from Equations (2.10) and (2.13) as

-bt y -bt
P(N(t)=yy = a:l- I. -a(l-e y=0,1,2,... (3.1)

In other words, N(t) has a Poisson distribution with mean

m(t) E[N(t)] = a(l-e -b) . (3.2)

Note that

ay -a
P(N(-)=y= e , y=O,l,2, (3.3)

I.e., the distribution of N(m) , the total number of failures

encountered or errors detected if the system is used indefinitely,

is also a Poisson distribution with mean 'a'. This result is con-

sistent with theoretical studies which indicate that the Poisson

process is the limiting distribution of many phenomena similar to

the software error occurrence phenomenon (References 41, 62).

14

3.2 Number of Remaining Errors and Related Results

We have been considering the number of failures encountered

by time t, N(t) . Since many of the performance measures depend

on the number of errors remaining in the system, we now consider

this phenomenon.

Let N(t) be the number of errors remaining in the system

at time t, i.e.,

N (t) N N)N (t) ,(3.4)

The expectation of N(t) is given by

E[N(t)] = aebt. (3.5)

The conditional distribution of N(t) , given N(t)=y, is

obtained as follows:

P(N(t)=xIN(t)=yj =P[N(-) =y+x)

ay+X -a
(y+x). e x=0,1,2,... (3.6)

This conditional distribution is important for deciding whether

the software system under development can be released or not. The

decision should be made based on the number of errors remaining

in the software because this quantity plays an important role in

software reliability assessment. Suppose that the decision-maker

conducts an experiment and finds y software errors by time t.

Then, a decision might be to

Accept if N(t) < nO

and

Reject if N(t) > nO

15

where n0 is some specified number. For this decision rule, the

probability that the software system is accepted for a given number

of failures y by time t is

P(Acceptj = P(N(t) <n 0 IN(t) =yj

and, using Equation (3.6), becomes

ay+i -a

P(Accept) = (y+i) (3.7)

i=O

The conditional expectation of N(t) , given N(t) =y, is

give-a by

E[N(t) IN(t)=y] = E[N(-)-N(t)IN(t)=y

- EN(-)-y)

or E[N(t) IN(t)=y] = a-y . (3.8)

Therefore, the expected number of errors remaining in the software

system at time t, given that y errors have been detected during

the testing period t, is simply the expected number of failures

to be encountered during [0,-) less the number of errors detected

during the period [0, t].

As we can see, the parameter 'a' plays a crucial role in :his

study.

16

3.3 Software Reliability

Let a sequence of random variables (Xi., i=1,2,... denote

a sequence of times between software failures associated with the

N(t) process. Then X. denotes the time between the (i-l)st and1

the ith failures. We also define

n

SXi, n=l,2,... (3.9)Sn

which represents the time to the nth failure. Let §j(x) be the

Cumulative Distribution Function (cdf) of x1 , i.e.,

0X(x) P(X<X). (3.10)

Note that the event (X1 >xj implies that there are no failures

during (O,xj, i.e., the event (N(x)=03. Then using Equation (3.1) the

reliability function associated with the first failure time is

given by
Rx (x) P(X1 >x) = P(N(x)=O

1
or RX (X) e ea(l-e- (3.11)

Now, the cdf of X1 can be written as

0 xIX) = l-Rx (x)

or (x) = 1-e-a(l -) (3.12)

The Probability Density Function (pdf) is defined as

17

d %X (x)(x) dx

so that

oX (x) = abe-bx e-a(l-e- b x (3.13)

Next consider the conditional probability distribution, IX1 (x Is)

of (X2 IX 1. The event [X2 >XlX =sJ implies (no failures in (s,s+x]j.

Then the conditional reliability function of the second failure,

given that the first failure occurs at time s , is given by

RX2xI (xIs) P(X 2 >XIXI=S)

= P(no failures in (s,s+x]j

- P(N(s+x)-N(s)=Oj

=e- [m(s+x)-m(s)]

-a[e - b s -e - b (s+x) 1 (3.14)

From Equation (3.14), we obtain

t X21Xl1(X]S) - -PA 2 1(XIS)

1 e - a [e - bs - -b(s+x) (3.15)

and

X2(XlS I s F X (XIS)

ablxie-xs)~ (x)e-a[e - bs - e-b (s+x)1 (3.16)

abe e((3.16)

Combining Equations (3.12) and (3.16), we get the joint density

of X1 and X2 as

18

Plf (Xix 2) = TX x1(2I) (X 1)

-bx 1 -b(x 1 +X2))
= (abe) (abe

-bx1 -bx1 -b(x +x)
-a(1-e)-a(e -ex e e

or (p o (Xix 2 a2b2 1x -~ X2) e a~-~ 1 1 + *2 (3.17)

Making the transformation s I=X 1 1 s 2=X +ix2 . the joint density of

S 1 and S 2 is

(P it 2(sis a2 b2 e-bs 1 e-bs 2 e-a(1-e s
2)(.8

In general, it can be shown that the conditional reliability

function of .Xk given Sk~ " s , is given by

R k Is k-i (XIS) e- ea(ebs e-b(s+x) (.9

19

3.4 Conditional Distribution of Xk iSk_ 1

The conditional cdf and pdf are obtained from Equation (3.19)

dxby recalling that R(x)=l-!(x) and d() x hs ehv

e-bS -b(sx

0XkSkl (Xis) = l-e - a (e -e (s+x) (3.20)

and

XklSk-l(XIS) = abe - b (s + x) e - a e - b s - e-b(s+x) , (3.21)

respectively.

As can be seen from the above equations, the time to the next

failure depends on the time when the last failure occurs. It should

be noted that the distributions of times between failures are

improper, i.e.,

-bs

XkliSk=1 e l-ae < (3.22)

This is due to the fact that the event (no failures in (0,-]] is

allowed in our model. Hence, the expectations of these quantities

do not exist. This type of behavior does not cause any theoretical

problems in analysis.

20

3.5 Joint Density of waiting Times

As defined above, xk , k= 1,2,...) denotes the sequence of

times between software failures. Then

n
Sn = E X. , n=l,2,...i=l 1

is called the waiting time to the nth software failure. This quantity

is quite important for estimation of parameters a and b and, hence,

we obtain the distribution of [Si,S 2 ,...,S n. The distribution

is obtained by using an approach similar to that used for getting

Equation (3.17). The result is summarized in the following theorem.

Theorem. The joint probability density of SlS 2 ,....sn is given

by

n
-b s s -bs

(sI , . . . ,S (sI, .,sn) (ab) n e i=l e -a(l-e) (3.23)

where sits 2 ,s denote the realizations of SItS 2 ,...,S n ,

respectively.

The density can also be written as

-m(s n) n

S.. n (s l . . . s n e k=l)(Sk) (3.24)

where X(sk) km(sk) and m(sk) a(l-e). For a proof of

this theorem, see References 11 and 15.

Equation (3.23) will be used in Section 4 to ectimate a

and b based on observed data s= (s, Sn)

2.1

3.6 Joint Counting Probability

The property of independent increments, along with Equations

(2.8) and (2.12) of Section 2, provides a complete statistical

characterization for NIIPP so that the joint counting probability

can be determined for any collection of times 0< t1 < t2 < ... <t n .

That is, with t 0 = 0 , Y0 = 0

P(N(t1) = yI'N(t2) = Y 2 1 ... N(tn) = Yn)

n
= P P(N(ti) -N(ti-1) =.Yi-Yi-i
i=l

n [m (ti - m(ti-l)] Y Y - m _(t n)
= I 1 e . (3.25)

i=l (Yi - Yi-I) "

Equation (3.25) is needed for estimating the parameters a and b

for given data [(yi,ti) , i= 1,2,...,n), as will be seen in

Section 4.

22

4. ESTIMATION OF MODEL PARAMETERS FROM FAILURE DATA

The basic models for the failure process and performance

measures were developed in Sections 2 and 3, respectively. In

order to use these models for software performance assessment, the

only parameters to be specified are the total expected number of

errors to be detected, a, and the error detection rate per error,

b . In othcr words, for given a and b , various useful quantities

can be computed from the relevant equations in Sections 2 and 3.

In general, a and b are not known for a specific software

system and are estimated from the available data generated during

testing. However, that is not the only way to get a and b. One

may be willing to extrapolate these values based on the data from

one or more "similar" systems. Another method would be to use a

Bayesian approach, whereby knowledge about a and b can be expressed

as prior distributions and used for performance assessment. This

approach can also be used in conjunction with available data and

is specially useful when failure data are scarce or expensive to

collect. Formal analytical expressions for the Bayesian approach

are currently under development and will be reported in a separate

technical report.

The purpose of this section is to describe methods for

estimating a and b from failure data. Use of these methods is

discussed in Sections 7 and 8 via failure data from operational

systems. Such data are generally available as

(i) total number of failures (errors) in given time intervals;

and/or as

(ii) times between fail]Ares.

23

Most of the available data is given in the form of number

of failures in given time intervals. The data on time between

failures is very rare. Both of these cases are considered below.

Expressions are also derived for calculating the joint confidence

regions for a and b .

24

4.1 Estimation When Cumulative Failures are Given

We first consider the case when data are available as cumula-

tive number of failures in given time intervals. Suppose

yl°Y2 ... yn are the cumulative number of failures detected by times

tlt2 . ,tn , respectively. This can also be written as data

pairs [(y iti) , i= 1,2,...,n). Thus the number of failures in

time interval (t i-lti) is (yi-Yi_l) for i=l,2,3...,rn, where

t = 0 and y0 = 0 . We will obtain the Maximum Likelihood Estimates

a and b of a and b , respectively. To do this, we first write

the joint density and obtain fhe likelihood function, and then the

log-likelihood function. Next, we take the partial derivatives of

the log-likelihood function with respect to a and b and equate

them to zero for maximization. The solutions of the resulting two

equations are the desired values (a,b).

Now, to get the joint density, we note that in our notations

YlIY 2 Yn are the observed values of N(tI),N(t2),...,N(tn),

respectively. Hence from Equation (3.25),

P[N (tl) = Yl , N (t2) = Y2 N.. N(tn) =Yn]

n [m(ti)-m(t i iil -{m(ti)-m(t)H
__ _ _ _ _ __ _ _ _ _ 1- i-I T -e (4.1)

i=l

-bt.
where m(t)= a(1-e

25

It is well known that the likelihood function for the para-A

meters is simply the joint density of ylY2 "'yn, but now these

values are known constants. Substituting for m(ti) in Equation (4.1),

the likelihood function for (a,b) given the data (1,t) is

n -bt -bt. Yi-Yi-n -bt
L(a,bly,t) = [a(e -e (4.2)

i=l (Yi Yi-I) :

Taking the natural logarithm of Equation (4.2) yields:

n n -bti_1 -bt
AnL(a,by,t) = Z (yi-yi_l)na + E (y i-yiln(e -e

i=l i=l

n -btn
- An (yi-Yi_) - an(-e (4.3)

i=l

As mentioned above, the maximum likelihood estimates (mle's) are

those values of a and b which maximize AnL(a,bly,t) , i.e., which

satisfy (for brevity we write L to denote L(a,bly,t))

aLnL =0
ba

and (4.4)

oInL 0
6b

By taking the partial derivatives of Equation (4.3) and equating

them to zero, we obtain after some simplification (recall that

Yo= 0),

-bt

a(l-e n) , (4.5)

and

26

-bt. -bti1-btn n (yi-y_l) (tie I _ e (46

at e E (4.6)
n i=l -bti -bti_

e ae

As can be easily seen, all the quantities in Equations (4.5)

and (4.6) are known except a and b . Since these equations do not

yield simple analytical forms, we must resort to numerical methods

for their solution. The resulting values of a and b are the

mle's 2k and b , respectively.

It should be pointed out that even though the mle's are the desired

values, it is often useful to study the log-likelihood surface as a

function of parameters a and b . For given data, a plot of the

log-likelihood surface can be obtained by solving Equation (4.3) for a

grid of values of a and b . If the plot is flat, it would indicate

a large variability associated with the mle's while a sharp sur-

face is an indicator of low variability. A surface with sharp rises

and falls might cause problems in numerical solution of E4uations

(4.5) and (4.6), while a well-behaved surface would ensure rapid

convergence to the values a, b

4.1.1 Variance-covariance and confidence region for (a,b)

In addition to the mle's a, 6, we generally want to quantify

the region in which the true values a, b might lie with a specified

degree of confidence. This is referred to as obtaining the 100(1-a)%

joint confidence region for (a,b). In general, it is not possible

to get the exact confidence region (see Reference 20) because

the true distribution of (2i,b) is unknown. However, mle's

have a vcry desirable property

27

* --------------

that they are asymptotically normally distributed, if the

data size is large. In practice a sample size of approximately

20 (n-_20) should be satisfactory to use this property.

Also of grcat usefulness is the invariance property
of the

Mle's, i.e., a function of (a,b) can be estimated by using the

mle's a, b and this function will also be a mle. This will be

useful for estimating N(t) , R(t) , etc.

Formally, as indicated above, the mle's are normally dis-

tributed for large n, i.e,

.b- N a) Ecov as n-*. (4.7)

The variance-covariance matrix represents

c - (Var(ai) Cov(a,b))

coy =~ Cov(ba) Var(b)

and is given by

raa r ab

Ecov = (4.8)

(rba rbb

where

r. - E iaj i,j =a,b.

That is,

28

!,V

ra = - E 6 2 nL (4.9)

aa aa 2

r 2nL (4.1)

] 2£n L

,! rbb r -E (4.10)2

Taking the appropriate partial derivatives of Equation

(4.3) and substituting in Equations (4.9), (4.10) and (4.11), we

obtain after some simplification, (recall that E[N(ti)] =m(ti)=
-bt.1i

a(l-e - 1t) :

1 n -bti_1 -bti
r = - E (e -e , (4.12)aa a i=l

-bt
nrab = rba =te , (4.13)

and

n 2 -bt 2+ -bt 2 -bt
rbb =a[r ((t2 +t.)e -(t.+t.)e -tne (4.14)i=l it-

Substituting these expressions in Equation (4.8), we get the

variance-covariance matrix for (Thus the asymptotic distri-

bution of (a,b) is completely specified if (a,b) are known. However,

(a,b) are of course not known. Therefore, we use the estimates

(a,b) for (a,b) in Equations (4.7), (4.12), (4.13) and (4.14) to

get estimates of the parameters of the asymptotic bivariate normal

dis tr ibut ion.

29

Now, the correlation coefficient between a and b is esti-

mated as

coyj^,b) a (4.15)

- var() , Var(b)

where Var(a), Var(b), Cov(ab) are obtained from Equations (4.8)

to (4.11).

Finally, to obtain the 100(l-a)% confidence regions for a

and b we use the following approximation (Reference 55)

1 2AnL(.a,b ly,t) -InL(a,b ly,t) = _f X2; o

or InL(a,bly,t) = InL(a,bly,t)- 1 2 (4.16)

where InL(a,bIy,t) represents the value of the log-likelihood

function at a=a and b=b.

Substituting Equation (4.3) in Equation (4.16) we get

n n -bt. -bt.i-l
E (yi-Yi_l)Lna+ Z (yi=-yi 1)An(e 1-e

i=1 i=l

n -bt
- A Ln(y.i-yi): -a(l-e n) = C, (4.17)

i=l 1

where

C = InL(-,bly,t)-- X 2 ; . (4.18)

Equation (4.17) defines a contour of the 100(l-u)%, confidence

region. For given data, a, b, end e, Equation (4.17) can be

solved for those values of a and b which satisfy it. (For com-

putational purposes, it is easier to take values of a (>a) and

solve for the corresponding values of b.)

30

4.2 Estimation When Times Between Failures Are Given

Now we consider the case when data is available in the form

of times between individual failures. As mentioned earlier, such

data is not common and is rarely available.

Recall that XIX2,...,X n denote the times between failures and
n

S = E X, " Then the data is in the form x= (x1 ,x2 ,....x) and
n i=l 1. n

n
S = i: x. The distribution of times between failures was discussed

n i=1 I

in Section 3.5 and is obtained from Eauations (3.23) and (3.24), as

-b E s. -bs
n= 1 a l-e n

SIs = (ab) e . e

The likelihood function for a, b , given s, is the same as above

and can be written as

n
-b E s -bs

n i=l 1 -a(l-e
L(abls) (ab) * e . (4.19)

Then the log (natural) likelihood is

n -bs
InL(a,bls) = nena+n~nb-b Z s. -a(l-e) . (4.20)[=i

To get the maximum likelihood estimates a, , we take the partial

derivatives of Equation (4.20) and equate them to zero, i.e.,

I nL, = 0 (4.21)
75a

and

blnl =0 . (4.22)
b

These equations yield

31

-bs
- -e (4.23)

a

and

-bs n
= as *e n-b Z' s.. (4.24)b n i=l

As in the first case, these equations do not yield simple

analytical solutions and have to be solved numerically. The solutions

of Equations (4.23) and (4.24) are the mle's a and b.

Regarding the asymptotic distribution of (a,b), recall that

(see Section 3.4), the joint density of SI,...,Sn is improper.

Therefore, the asymptotic properties of mle's do not hold in

this case.

To obtain the 100(l-)% confidence regions for (a,b) we

use the same approximation as was used in Section 4.1, viz.

AnL(a,bls) - LnL(a,bIs) 12 (4.25)

From Equations (4.20) and (4.25), a contour of the 100(l-')%

confidence region is obtained as

n -bs
nAna+n~nb-b E s. -a(l-e n) C , (4.26)

i= 1

where

C = £nL(a,b Is)-2 X2 ;-" (4.27)

As before, Equation (4.26) can be solved for given s

a, b, and a to get the desired con.crvrs.

32

5. GOODNESS-OF-FIT TEST

A non-homogeneous Poisson process model was proposed in

Section 2 to describe the software failure phenomenon. The mean

value function of this model was given in Equation (2.10). In

this section we describe the Kolmogorov-Smirnov goodness-of-fit

test (K-S Test) to check whether this model provides a good fit

to a given set of failure data.

Consider the case when the data are given as a sequence of

software failure times s= (sl, 2...,s) . We want to test

whether the events s are generated from a NHPP. Suppose that

05_S1<_S2 _ ... _Sn are the random times at which the first n

events occur in a N11PP with unknown mean value function m(t) .

We wish to test the simple hypothesis

H0 :m(t) m0 (t) for t>0,

versus H1 m(t) m0 (t) for t >0 .

-b0 t
writing m 0(t) = a 0(l-e 0 , the hypothesis H0 can be written as

-bot
H0 : m(t) = a0 (1-e) for t>0. (5.1)

For testing purposes we need the joint conditional distribution

of the failure times. The following theorem is useful in deriving

this distribution.

Theorem 5.1. Given that N(t) = n, the n failure times

05Sl -5S2<... _
5 Sn in the interval [0,t] are random variables

33

"- "-'

7.

whose joint conditional distribution is the same as the distribu-

tion of the order statistics of a random sample of size n from

the distribution G(x) m(x) for 05x5t-re~(t)- - "

For proof of Theorem 5.1 see Cox and Lewis (Reference 11),

Corollary 5.1. Given that Sn= t, the (n-1) failure times

0 S1 S 2 <S... 5Sn-1 have the same joint conditional distribution

as the order statistics of a random sample of size (n-i) from the

distribution G(x) = m(x)
m (t)

This Corollary easily follows from Theorem 5.1.

Using Corollary 5.1, we reduce the hypothesis of Equation

(5.1) to

m0 (x)
H0 : G(x) = G0 (x) = m0(t) for 0!<x_<t. (5.2)

m0(

For our case we have

l-b x

HO: G(x) = -b 0 for 0_x<-t. (5.3)

1-e

Note that the expression in Equation (5.3) represents a truncated

exponential distribution.

We now consider the Kolmogorov-Smirnov (K-S) goodness-of-fit

test (References 53, 55). Given the values of a random

sample of size n-i , sl,S2 ,...,Snl I we define the sample cdf by

Hn-i(x) =k/(n-l), where k is the number of sample values Sx.

Thus Hn-1 (x) is a step function which is zero for x less than

s, 1has a jump of 1/(n-l) at each sk , and is 1 for x greater

than or equal to sn1. That is,

34

0 , x<s 1

Hn(X) k/(n-i), s k<x<s , k=2,3,...,n-1. (5.4)

1 , sX>Sn_1

Since H n-i is a step function and G is monotonically increasing

and continuous, it suffices to test the absolute deviations at

the sample points sk ' k= 1,2,...,n-l, and then take the maximum

of these (n-i) values. The following procedure is used for

calculating the test statistic D. For each k= 1,2,...,n-i, set

Dk = maxI!G0(Sk) -nI , IG0(sk) -- l -

Then set

D = max (Dk. (5.5)
k

If the value of D calculated in Equation (5.5) is greater than

or equal to the critical value Dnl , we reject the null

hypothesis H0 that SlS2#...* Snl follow G0 (x) ; otherwise we

do not reject the null hypothesis. The critical values Dnl;

associated with the K-S test at a level of significance a are

available from statistical tables (see Reference 53, p. 661).

It should be noted that if the parameters of G0 (x) are

estimated from the sample, the K-S test can be used but will give

extremely conservative results. To achieve better results, the

level of significance needs to be adjusted. One approach suggested

by Allen Reference 2) is to test at the 5% level of significance and

use the critical value for the 20% level or test at the 1% level

and use the critical value for 10% level. We will use this approach

in our analyses in Sections 7 and 8.

35

• 4 -.'-

Another use of the K-S test in our context is in developing

confidence limits for the true cdf G(x) . For example, if we take

a random sample of size (n-1) and use it to construct the sample

cdf Hn-l(x) , then we can be 100(l-ct)% confident that the true

cdf G(x) does not deviate from Hnil(X) by more than Dnl;e .

That is, the 100(l-x)% confidence limits for G(x) are given by

11n-l(X) -D n- 1; < G(X) < Hn-l(X) + D nl;a• (5.6)

These limits are especially use ful in the case when the parameters

of G0 (x) are to be estimated from the data. For this case the

null hypothesis H0 will be rejected at a level of significance a

if one or more points of G0 (x) fall outside the i00(1-a)% con-

fidence limits given by Equation (5.6). Otherwise, it will not

be rejected.

36

6. GENERAL METHODOLOGY FOR SOFTWARE FAILURE DATA ANALYSIS

Sections 2 through 5 were devoted to the development of

models, measures, estimation techniques and a goodness-of-fit test.

In this section we summarize the procedure for analyzing actual

software failure data. Analyses of failure data from two typical

systems are presented in Sections 7, 8 and 9.

The step by step procedure is shown in Figure 6.1 and des-

cribed below.

Step 1: Study the failure data.

The model described in this report assumes that the failure

data represents the data collected after the system has been

integrated and the number of failures per unit time is statistically

decreasing. If, however, this is not the case, the NHPP model of

Section 2 may not yield satisfactory results. Furthermore, adequate

amount of data must be available to get a satisfactory model.

A rule of thumb would be to have at least ten data points.

Step 2: Obtain estimates a and b of parameters a and b

respectively.

Two methods are available depending upon the type of avail-

able data.

If the data is in the form of pairs (t,y), the maximum

likelihood estimates are obtained by simultaneously solving

Equations (4.5) and (4.6). [Section 4.1]

If the data is in the form of times between failures, the

maximum likelihood estimates are obtained by simultaneously

solving Equations (4.23) and (4.24). [Section 4.2]

37

..... _ _ _ _ _ _ _ _ _ _ _ _

FAIL.URE [>A

r, H 1P MO0D & L

ESTIMATE PARAMETER S

O Cumulative Failurcs

o- Times L~iween 1-ailues

OBTAIN' FITTED rr'i

(Section?)

COLLECT Reet GOODNE SS OF F IT
MORE TS
DATA (eto5

OBTAIN PERFORMANCE
ME ASURE S
(Section 3)

DETECTED rU;ND EETE.L SOFTWIVA R& TI; i: -0 N~E T iiE TO ki1h
[R P,RRS BYt I jEi RORSAlrt RF.LIA31LITY FAHLkF FAILURE
DiS1T;ID"UTION IDSTRIEIJTL Nt AFAIl LFs JDISTF\ILl U iON r) 37 .'D'U T ION

I tsection 3-.2)1 1 4Scj~ .) ~cto . (Sctilor5

FIG. 6.1 FLOWCHART FOR SOF'TVAf~ FAIl-UfE DATA AALY S IS

.. . . ° - -- -- --

Step 3: Obtain the fitted model.

The fitted model is obtained by first substituting a and b

from Step 2 for a and b , respectively, in Equation (2. 10) to get

re(t), and then substituting Ri(t) for m(t) in Equation (2.13).

At this stage, we have a fitted model based on the available

failure data.

Step 4: Perform goodness-of-fit test.

Before proceeding further, it is advisable to conduct the

Kolmogorov-Smirnov goodness-of-fit test to check the model fit.

This is done by following the procedure of Section 5. Specifically,

the observed value of D is obtained from Equation (5.5) and

compared with the critical value Dn.; for a desired significance

level a. In general a= .05 or .10 is quite satisfactory.

If the model fits, we can move ahead. However, if the model

does not fit, we have to collect additional data or seek a better,

more appropriate model. There is no easy answer to either how

much more data to collect or how to look for a better model.

Decisions on these issues are very much problem dependent.

Step 5: Compute confidence regions.

It is generally desirable to obtain 800/, 90% 95% and 99% joint

confidence regions for the parameters a and b using the method dec-

cribed in Section 4. Such regions are given by Equation (4.17) for

cumulative failures data and by Equation (4.26) for the times between

failures data.

Step _6: Obtain performance measures.

At this stage we can compute various quantitative measures

to assess the performance of the software system. Several useful

measures and expressions were given in Section 3. Equations (3.1),

39

I

(3.3), (3.5), (3.6), (3.8) and (3.19) can be used for this purpose.

The specific measures to be employed will vary from one application

to another. Confidence bounds can also be obtained for

these measures to evaluate the degree of uncertainty in the computed

values.

40

7. ANALYSIS OF FAILURE DATA FROM A LARGE

SCALE SOFT'.1ARE SYSTEM

The data to be analyzed in this section have been taken from

a large scale project reported in 'P1ayer et al. (1976). This

project represents an initial delivery of a large command and

control software package written in JOVIAL/J4, (JOVIAL is a higher

order language generally used for Air Force Command and Control

applications). It consists of 115,346 total source statements and

249 routines. Some other characteristics of this project are

summarized in Table 7.1.

7.1 Failure Data

The failure data used for this study is taken from the

Software Problem Reports (SPR's) generated during the formal test-

ing phases of this project. The majority of software errors were

detected during Validation (Jun 1-Aug 12), Acceptance (Aug 13-Aug 24),

Integration (Aug 25-Oct 26), and Operational Demonstration (Oct 27-

Nov 12) testing. However, operational data spanning a period

of approximately nine months was also available and is used for

comparison with the predicted values. The only time frame readily

available from the data was the calendar day. The data also con-

tain the mistakes by the operators and the "explanatory" errors,

i.e., corrections to make a change to a comment statement or those

errors for which a "fix" is not to a routine. These explanatory

errors do or-do not indicate the type of change. Therefore, the

original daLa was restructured into four sets of data denoted by

41

TABLE 7.1

SOFTWARE PROJECT CHARACTERISTICS

Size (Total source statement) 115,346

Number of routines 249

Language JOVIAL/J4

Formal Requirements To function level

Co-contractor yes

Subcontractor No

Operating Mode Batch

Formal Testing 24 Weeks

Validation 10

Acceptance 2

Integration 10

Operational Demonstration 2

42

DSl, DS2, DS3 and DS4 (Reference 63). The description and the

total number of errors detected during the formal testing phases

for each data set are given in Table 7.2.

In this analysis the number of software errors detected

during formal testing is counted on a weekly basis. Also, for

each data set the software errors detected during the first nine

weeks are eliminated due to the fact that we are interested in

analyzing the software failures over the period when they are

decreasing. The number of SPR's for the 15-week period for the

four cases (DSl to DS4) are given in Table 7.3.

43

a~)
".4 0,

U 0 co a~o L .

0

t.0~~I m N- -

0r 0

0$4 .- 0

H0 0 "4 0

:v. 0 L)Q EI

w0 0

z C%4 4.) 4
E-4 0*0-0

H4 P - £:
N 4 z 4J (-4Q 0 (

H 00

H- 0 0- - $4 0 $4
04 0 0

Hl 01 4) 40 01

InU) ia 0 04
r-4 H- I I I I4 R) 4.J

Ur r'U rU.
0)4) 4.) 4;% 43) 41 tU1 :3

H4 H 4 M 0 0r
0~~~ 00 00 J J

0'D 0) 0' la4) 4i ~ 4)
".4 ".4 9. ".
$40 $4 $4 $4U04O U

0) 04 a)

$4 m -T $4

U)U to$4 $
H NE-4

44

t) w -) -.t %D a,__ _ _ -- "-0-- - -- CD %

CL

V) -,T i) MO M W t) 004 r 00 lr) '0 -' N O N
to in i w~ I-- r-4 te t. ~r- NT Co 00 ND 0) i

L, t) Lr n O14.4 (J ~ ~ - '0 C o 0 " "

0

Li , r- it) 0C 40) N") Co, r-' Co r- \0) - * -
"D \.O ID co \0 r")-4 it) (NJ ol 0 t- o 0 n a'

-4 4') (NJ 4"-4 14 -4 r4 C14 C1 ('4

C4

V) m4 N 00 if) t") 0" .o . .) OD m0 4 m CD

0 \D) m m -4 (4 n Co N-) \0 004 004 1') if) N
LL r " tO --t -4 - .4 -4 C-1 4 N (q ('4 ('4 ('

U

Co 00 ' Co m o (4" 0\0 (4 %0J (N in GO N) 4 \0) 0)

M LI. 4) -NJ 0" n tn C-4 V)4 " \ -4 ('4n 0

-4 -4E-4 4 -

LL. " -(r

Co V) m "o NO) i) Co\0 0 -t 4 00 0 4") t- '00
o" 14) 1 4 I 0 r-4 00) NI,) r - 4 '. 0 -4 ND Co4 Co
" m in~ (N 0 N 0 N 0 Co r-0) 0 CD (NJ ('1) -)*4*~

H 4-4 -4 -4

Cu

Co t

0) Co V) N 14 " '.0 CO Co Nt I- Co -T CoO .i ' " N4

')0) N 00 Co '.0r t i)i0 D N r-4 CoT 0 Co N C

W.- C-4--

C)

M.

Co ') '. N) Nj '0) (D4 (14 V) -0 if)N C

0 ' o ~~ NL)CoC 045 C 0.

7.2 Estimation of Parameters

The data for this project are in the form (tl,Yl),(t2,y2) ,

...,(t15,Y15)., i.e., as the number of failures in specified time

intervals. Hence the estimates a and b are obtained by simul-

taneously solving Equations (4.5) and (4.6). Thus, by substituting

the data set DSl in Equations (4.5) and (4.6) and solving, we get

= 1348, = 0.124

and the fitted mean value function is

(t) = 1348(1- e- 0 .124t) t > .

This is also an estimate of the expected number of software failures

detected by time t. A plot of the actual cumulative number of

failures and the fitted values is given in Figure 7.1.

46

'R-ow !~-

CONFIDENCE BOUNDS
(DS I)

1200-I

1000- upper bound
Fitted

800-

S600. 34

00

0

05 10 15
TIME (WEEK)

Figure 7. 1 Actual and Expected cumulative Number
of Failures and 90% confidence bounos
for the N(t) process for data set DS1.

47

7.3 Goodness-of-fit Test

The goodness-of-fit test is now conducted following the pro-

cedure discussed in Section 5. Since the sample size is 15, the

null hypothesis to be tested can be written as

0 0 i - b (for i= 1,2,...,15, (7.1)H0 : 0t i = b _(15)

l-e

and the sample cdf as

0 , <t 1

H(x) = yi/Y5 ti-l<x<t , i=2,3,...,15. (7.2)

1 , _ t 15

The computed values of H(x) for various t. are given in column 21

of Table 7.4.

Now we substitute b 0 = b0. 124 in Equation (7. 1) and compute

the value of G0 (ti) for i= 1,2,...,15. These values are given

in column 3 of Table 7.4. Columns 4 and 5 of this table are the

quantities needed to find D=max [Dk) (see Equation (5.5)). From
k

these columns we find the value of D to be 0.096 corresponding

to t. =9 .

To find the critical value corresponding to sample size 15

and a= .05 , we first note that the parameters had to be estimated

in this case. As mentioned in Section 5, for a situation like this

a suggested approach is to take a= .20 to get good results. From

the statistical tables (Reference 53, p. 661), D1 5 .20=0.266.

The observed value D= 0.096 is less than the critical value 0.266

and hence we accept the null hypotheses of Equation (7.1). Thus

48

K ~

TABLE 7.4

DATA FOR KOLMOGOROV-SMIRNOV TEST
(DATA SET DS1)

t H(t i) G 0(t i IG 0(t i)-II(t i) IG 0(t i)-H(t i-i)I

1 0.1784 0.1381 0.0403 0.1381

2 0.2979 0.2601 0.0378 0.0817

3 0.4587 0.3679 0.0908 0.0700

4 0.5000 0.4631 0.0369 0.0044

5 0.5404 0.5472 0.0068 0.0472

6 0.6028 0.6215 0.0187 0.0811

7 0.6503 0.6872 0.0369 0.0844

8 0.7004 0.7452 0.0448 0.0949

9 0.7707 0.7964 0.0257 0.096

10 0.8269 0.8416 0.0147 0.0709

11 0.8506 0.8816 0.031 0.0547

12 0.8875 0.9169 0.0294 0.0663

13 0.9359 0.9481 0.0122 0.0606

14 0.9903 0.9757 0.0146 0.0398

15 1.0000 1.0000 0.0000 0.0097

49

we conclude that at 51/ level of significance the model

PN(t)=y) = [1348(l-e-0124t)_ e- 1 348(1 - e- 0 .124t

y:

can be considered to provide an adequate fit to data set DSl.

To further check the adequacy of fit, we compute 95% con-

fidence bounds on G (ti From Equation (5.6), these bounds are

given by

H(t i) -D <°G(t < H(t i) D
3- 15;.05 . is; l.05

From the statistical tables, D =0. 366 and hence the 95%
15;.05

confidence bounds are given by H(t) + 0.366 . A plot of these

bounds and the fitted values are shown in Figure 7.2.

50

1.0

UPPER BOUND b b:.2

0.8-

0.6-

0.4-

0.2 j JLOWER BOUND

0.2-

0 3 6 9 12 15
TIME (WEEKS)

Figure 7.2 95% confidence bounds for the conditional
c.d.f. G(ti) and the fitted curve for
DSl data

51

7.4 Con idc-rce Region'; for (a,b)

To get -n appreciation of the variability in the estimated

vilucs of a and b , we now construct confidence regions for

(a,b). Such region-, are given by Equations (4.17) and (4.18).

For rj= .05 , the 95% joint confidence region will be the solution

of the following equation:

15 15 -.124t. -.124ti
E(yi-Yi-)An1348+ 1,Z (yi-yi_l)en(e -e
i=l 1

15 -. 124t15

- I Ln(yi-yi_l)' -a(1-e) C

where

15 15 -. 124t. -. 124t.InL(- ,bIy,tI)=-- (yi-Yi .)In(1348) + Z (yi-Yi_l)-Ln(e -e ll

i=l i=l

15 -. 124t15
Z In (yi-i_l)' - 1348 (1-e)

and

^ ^1 2

C = InL(a,bly,t) - X2;. 0 5

Data (yl,tl),(y2 ,t2), (y1 5 ,t1 5) were given in Table 7.3 and

2 =0.103.X2-,.05

A plot of this region is shown in Figure 7.3. From this plot we

see that uven though the most likely values of a and b, based

on the data, are a 1348 , b = 0.124 , the true values can vary over

the entire region contained in the 95% contour. Values a = 1450,

52

T. -
.p

1500

1400-7"D

LU

1200
0.1 0.11 0.12 0.13 0.14 0.15

PARAMETER b

Figure 7.3 Joint confidence regions for a and b

for Data Set 1351.

53

b=0.11 will be acceptable (with 95% confidence) and so will

a=1250, b =0.14. 50% and 75% confidence regions are also shown

in Figure 7.3 and can be similarly interpreted.

54

7.5 variance-Covariance Matrix

The variance-covariance matrix is useful in quantifying the

variability in the estimated parameters and is obtained from

Equations (4.8), (4.12), (4.13) and (4.14) by substituting

a=a=1348, b =b =0.124, and the actual data values from Table 7.3.

For data set DSI, we get

^ =/2368 -0.2071

coyv -0.2071 5.554 x 105

From this we have

Standard Deviation (a) V'r (a) = 48.66

Standard Deviation (b) /Var (b) = 0.00745

Correlation Coefficient - a,

-0. 2071= ~= - 0.571 .

1(2368) (5.554 x 10 - 5)

55

S~
' "

7-T~ ,,--_... __- - __:,,_ " __ _ _ _______ - - -__ - . ---

7.6 Nutiber of Remaining Errors

One useful quantity is the estimated number of remaining

errors in the system after some time t. This value is obtained

from Equation (3.5) as

E{N(t)) = a-ebt

-0. 124tor E[N(t)) = 1348e

A plot of this quantity is showii in Figure 7.4. As expected,

this value decreases with time. Also shown is a plot of the "actual"

number of remaining errors which is based on the assumption that
0

all the errors were found during 36 weeks of operation. It should

be noted that this assumption is made for illustration purposes

only and, in general, this may not be the case.

It would also be interesting to compute confidence bounds on

EN(t). Such bounds can be easily computed as follows.

Let f(a,b) denote EN(t) . Then, it is well known (References

53, 55) that 100(l-a)% confidence bounds for f(a,b) are given by

(f (a,b) +t n_2;a/2 fV(f(ab))) . (7.3)

where

) ((7.4)
V~f~aQb)) Mb F cov a (.4

6f

(6b a=a b-b

and tn_2;o/2 is the upper a/2 percentage point of the t-distribution

with (n-2) degrees of freedom.

The 90% confidence limits for E(N(t)} for data set DSI are

computed from the above equations and are plotted in Figure 7.4.

56

.~~~

1500

C,)

o :\1348
1200 b 0.124

N.
(n)
0 90/o LIMITS

9900-
w

m

X \/-FITTED/

O 3002
0W

TIME (WEEKS)

Figure 7.4 Expected number of remaining software

errors and related quantities for various

t (Data Set DSI)

57

7.7 Software Reliability

Software reliability is a commonly used performance measure

to assess how reliable the system is at various times. To compute

software reliability, we use E-uation (3.19) and get

-e)
ae -bs -b(six)

RXkISk_ 1 = Ja= e

This gives the reliability after time x starting from the current

time s . For example, starting from s = 15, the reliability after

0.04 weeks, i.e., at s+x=15.04, is

138(-(124) 15 e.124) (15.04))

R(0.041s=15) = e 1 34 8 (e 1

or R(15.04) = 0.354.

To see how reliability varies with time, a plot of R(xIs=15) is

shown in Figure 7.5.

To obtain confidence bounds on reliability, we use a pro-

cedure similar to the one used for getting bounds on EfN(t)j.

Let g(a,b) represent kR(xIs=15) . Then the confidence bounds

are given by

{g(a,b)±t 75

where ()
data are shown in Figure 7.5.

(6a .6b)I -v b5

0.- S--UPPI-RB-0,J1-

.. FIT I-ED

I-I

< 04-- 90% LOER BOUND

0.2-

o ..

15.00 15.02 15.04 15.08 15.08 15.10
TIME (WEEKS)

Figure 7.5 Reliability and 90o confidence bounds

after 15 weeks of testing

59

7.8 Summary of Analyses for DSl to DS4

Analyses similar to those for data set DSl were undertaken

for data sets DS2, DS3 and DS4 of Table 7.3. A summary of the

results is given in Table 7.5.

60

TABLE 7.5

A SUMMARY OF DATA ANALYSES

Data Set DS1 DS2 DS3 DS4

1348 1823 3958 3446

0.124 0.112 0.0768 0.0771

48.7 62.2 147.3 136.6

!Vrb} 0.00745 0.00643 0.00460 0.00492

P ab -0.571 -0.648 -0.856 -0.855

Estimated Number of Remain-

ing Errors at the end of 209 338 1212 1050

Operational Demonstration

Number of Errors Detected

During Nine Months of 198 263 540 475

Operation

61

8. ANALYSIS OF FAILURE DATA FROM NAVAL

TACTICAL DATA SYSTEM (NTDS)

Jelinski and Moranda (Reference 31) first analyzed some software

failure data from the U.S. Navy Fleet Computer Programming Center.

Since then this data set has been used by several investigators

for model validation purposes. In this section we analyze the

same data set to see how good the N11PP model is in modelling these

failures. In the next section we will compare the results from

the NHPP model with those of Jelinski and Moranda.

The data set was extracted from information about errors in

the development of software for the real-time, multi-computer com-

plex which forms the core of the Naval Tactical Data System (NTDS).

The NTDS software consisted of some 38 different project schedules.

Each module was supposed to follow three stages: the production

(or development) phase, the test phase, and the user phase. Many

of the "trouble reports" or "software anomaly reports" were gen-

erated whenever a system-level symptom of a deficiency was noted

by operators or users. A proper trace back to the exact cause ir

software of this symptom was done by personnel familiar with the

entire system. However, Jelinski and Moranda felt that it

was better to analyze the data from isolated modules than from the

total system, due to the fact that many of the modules did not

evolve in the fashion indicated. One of the larger modules, denoted

by A-module, had the desired pattern. The times (in days) between

failures for this module are shown in Table 8.1. Twenty-six

software errors were found during the production phase and five

62

TABLE 8.1

SOFTWARE FAILURE DATA FROM NTDS

ERROR NO. TIME BETWEEN FAILURES CUMULATIVE TIME
x k , days Sn =E xk9 days

Product ion
(Checkout) Phase

1 9 9
2 12 21
3 11 32
4 4 36
5 7 43
6 2 45
7 5 50
8 8 58
9 5 63

10 7 70
11 1 71
12 6 77
13 1 78
14 9 87
15 4 91
16 1 92
17 3 95
18 3 98
19 6 104
20 1 105
21 11 116
22 33 149
23 7 156
24 91 247
25 2 249
26 1 250

Test Phase

27 87 337
28 47 384
29 12 396
30 9 405
31 135 540

User Phase

32 258 798

Test Phase

33 16 814
34 35 849

63

.1

additional errors during the test phase. The last error was found

on 4 Jan 1971. One error was observed during the user phase on

20 Sept 1971 and two more errors (5 Oct 1971, 10 Nov 1971) during

the test phase. This indicates that a re-work of the module had

taken place after the user error was found. A more detailed de-

scription of the NTDS software can be found in Jelinski and

Moranda.

Data Analyses

The data in this case is available as times between software

failures and hence the method described in Section 4.2 will be used

for estimation of parameters. We consider the first 26 data points
26

in Table 8.1, for which n=26 and s 26= E k= 250 days.
26k=l

To get an appreciation of the likelihood function associated

with this data set, the log-likelihood from Equation (4.20) is

plotted in Figure 8.1. We see that the surface rises sharply

along the b-axis and is relatively flat along the a-axis.

The maximum of this surface is obtained by solving Equations

(4.23) and (4.24). Substituting the appropriate values from

Table 8.1 in Equations (4.23) and (4.24) we get

26 = - e-b(2 5 0) (8.1)
a

and

26 -= a(2 5 0)-e-b(
2J 0) b(250) . (8.2)

Solving Equations (8.1) and (8.2), numerically, we get

64

0

0

-w

4.,
w ICO

0 U
Li~ 0

cr
DI

0

0 It)

o U)
I M

w0

W 0

_ _ _ L

00

r-14

65

a= 33.99

and

r 0.00579

as the mle's for a and b, respectively. The fitted mean value

function is

m(t) = 33.99(1- e-0. 0 0 57 9 t) . (8.3)

and is shown in Figure 8.2, along with the actual data (determination

of the confidence bounds will be discussed later).

Goodness-of-fit test

We now perform the Kolmogorov-Smirnov goodness-of-fit test

to check the adequacy of the fitted model. Now, using Corollary 5.1

and the results in Section 5, we conduct the test based on 26-1= 25

points. The hypothesis, from Equation (5.2), is

1-b x

H 0 :G 0 (x) = _b0(2 50) for 0 <x< 250, (8.4)
1-e

and the sample cdf is

0 , x<s 1

H(x) = k/25 , Sk-l<X <Sk, k=2,3,...,25. (8.5)

1 x_> 25

The values of sk and H(sk) are given in Table 8.2. To compute

G0(sk) for various sk values, we replace b 0 by b in Equation (8.4)

66)

400

A

b 0.00579

n =26

20-
wLFte
0

z
Lower Bound

I0

050 100 150 200 250 300
TIME (DAYS)

Figure 8.~ Plots of Mean Value Function and 90% Conf idence

Bounds for the N (t) Process (NTDS Data)

67

TABLE 8.2

KOU OGOROV-SMIRNOV TEST
FOR THE NTDS DATA SET

k Sk -H(sk) G(sk) I G0(-.k)-H(S k)1 i(k)-H(s k)I

1 9 0.04 0.0664 0.0264 0.0664

2 21 0.08 0.1497 0.0697 0.1097

3 32 0.12 0.2211 0.1011 0.1411

4 36 0.16 0.2460 0.0860 0.1260

5 43 0.20 0.2882 0.0882 0.1282

6 45 0.24 0.2999 0.0599 0.0999

7 50 0.28 0.3286 0.0486 0.0886

8 58 0.32 0.3730 0.0530 0.0930

9 63 0.36 0.3996 0.0396 0.0796

10 70 0.40 0.4357 0.0357 0.0757

11 71 0.44 0.4407 0.0007 0.0407

12 77 0.48 0.4703 0.0097 0.0303

13 78 0.52 0.4751 0.0449 0.0049

14 87 0.56 0.5174 0.0426 0.0026

15 91 0.60 0.5355 0.0645 0.0245

16 92 0.64 0.5399 0.1001 0.0601

17 95 0.68 0.5532 0.1268 0.0868

18 98 0.72 0.5661 0.1539 0.1139

19 104 0.76 0.5915 0.1685 0.1285

20 105 0.80 0.5956 0.2044 0.1644

21 116 0.84 0.6395 0.2005 0.1605

22 149 0.88 0.7557 0.1243 0.0843

23 156 0.92 0.7776 0.1424 0.1024

24 247 0.96 0.9946 0.0346 0.0746

25 249 1.00 0.9982 0.0018 0.0382

68

and obtain Column 4 of Table 8.2. Entries in Columns 5 and 6 are

easily obtained from Columns 3 and 4. Now, from Equations (5.5)

and (8.4)

D = maxf IG0(Sk) -11(sk) IG0(sk) -H(sk- J.

k

In other words, D is the largest entry in Columns 5 or 6 and is

seen to be

D = 0.2044.

To test at ce= .05 , oe use a critical value corresponding to a= .20

as discussed in Section 5.

From statistical tables,

D 25;0.2 = 0.208.

Since D<D 2 5 ;0.2, we accept the null hypothesis, H0 ,at 5% level

of significance.

The 100(l-)% confidence limits tor G'x) can now be calculated

from Equation (5.6).For example, for e=0.05 we have D2 5 ;0. 0 5 0.264,

so that the lower and upper confidence bounds are

L(x) = max11(x) -0.264,0)

and

U(x) = min[H(x)-i-0.264,1

where 11(x) is given by Equation (8.5). The 95% bounds for G(x)

along with G0 (x) , are shown in Figure 8.3. We see that the fitted

model seems to be adequate.

69

" ! -,.- L, 'A-

I.0

UPPER BOUNDTr Ab0 059

0.8-

0.6-

Li:

00 LOWER BOUND

0.2-

050 100 15 20O5

TIME (DAYS)

Figure 9.3 95,', confidence bounds for the conditionazl
c.d.f. G(x) and the fitted C.J..F. cur-ve

70

Having established that the model provides a good fit, var-

ious performance measures of interest can be obtained by substitu-

ting the estimated values of a and b in the appropriate equations

of Section 3.

The estimated mean value function, as given in Equation 8.3, is

m(t) = 3 3 .9 9 (1-3-0.005
7 9t) A plot of m(t) and the actual number

of errors detected during the production period for this case was

given in Figure 8.2. Also shown were the 90% confidence bounds

for the N(t) process as computed from Equation (3.1).

The 100(1-u)% confidence regions for a and b are obtained

from Equations (4.26) and (4.27) following a procedure similar to

the one detailed in Section 7. These are shown in Figure 8.4 for

a =0.05, 0.25, and 0.50.

Next, an estimate of the expected number of errors remaining

in the software system at t = 250 days, given that N(250) = 26, is

obtained from Equation (3.8) as

E{fN(250)IN(250)=261 =33.99 -26 =7.99.

As indicated in Table 8.1, eight errors were found during usage

of the system, subsequent to the production phase. The excellent

match between the predicted and actual values is coincidental and

in general the NHPP model is not expected to perform this well.

Finally, software reliability,R 2 2 (x1250) , can be com-

puted from Equation (3.19). For example, the reliability values

after x = 5, 10, 20 and 30 days are 0.796, 0.638, 0.417 and 0.280,

respectively. Thus the probability that the system will operate

71

100 I ' I

A
a =33.99

80- A
b -0.00579

9 5 % n 26
/75%

!o- 50%

hiA AI~lk-(b,o)

nw 40-

-]

20-

0 0.003 0.000 0.009 0.012 0.015
PARAMETER b

ligure 8.4 Joint Confidence regions for a and b (NTDS Data)

72

...... z - . - . :.• , . T . . - - -. - . • - - . _ o, .' r ' r'' • -

without any failures for 30 additional days in 0.26. AS seen

from the data in Table 8.1, the system did operate without any

failures for 87 days subsequent to failure number 26.

73

_ /

9. A COMPARISON OF NTDS DATA ANALYSES USING

THE NHPP AND THE DE-EUTROPIIICATION MODELS

As mentioned in Section 8, the NTDS data has been analyzed

previously by several investigators for model validation purposes.

The first such analysis was undertaken by Jelinski and Moranda

(Reference 31) using a De-Eutrophication model. In this section

we provide a limited comparison of the results of analyses using

the NHPP and the De-Eutrophication models.

For the De-Eutrophication process, the cdf of Xk , the time

between the (k-l)st and the kth failures, is given by

k(X) = FNk+l(X)

= 1 -e (Nk+l)x k= 1,2,..., (9.1)

where N is the number of errors in the system at time zero and cp

is the error occurrence rate per error.

The likelihood function for N and cp for given data

xlx 2 ,. .. ,x n is

n
L(N, lx) = E fN-k+l (Xk)

k=1

n - (N-k+ 1) x k= D (N-k+l)pe

k=l

and the log-likelihood is

n n
InL(N,p lx) =nncp+ E 2n(N-k+l) - Z (N-k+l)pxk. (9.2)

k=l k=1

74

The maximum likelihood estimates of N and cp are the values

and , respectively, that maximize Lquation (9.2). Taking the

partial derivatives of Equation (9.2) and equating them to zero,

the likelihood equations which the mle's must satisfy are

n n
(p~X 1(PEx k = E - (9.3)

k=l k=l N-k+l

n
n/ = Z (N-k+l)xk. (9.4)

k=l

For the first 26 points in Table 8.1, the solutions of Equa-

tions (9.3) and (9.4) are R= 31.2 and =0.00685. In other words,

the initial number of errors is estimated to be 31.2 and the failure

rate is estimated to be 0.00685 errors per error day. There-

fore, the estimated number of errors remaining at the end of the

production phase (i.e., at t= 250) is N-26=5.2.

The estimates of a and b at t = 250 , as obtained in

Section 8, were a= 33.99 and b= 0.00579.

It can be easily shown that for the De-Eutrophication process

the expected number of errors detected by time t is given by

M N(t) = N(I- e -) . (9.5)

Substituting for N and cp ,

ANt, = 31.2(1- a -) . (9.6)

For the N(t) process (NHPP model), the expected number of errors

by time t, as given in Equation (8.3), is

E[N(t)] m(t) = 33.99(1- e-0.00579t) (9.7)

75

Equations (9.6) and (9.7) represent the same physical quantity.

plots of A,(t) and m(t) are shown in Figure 9.1. The actual

number of errors detected by time t is also shown. A comparison

of the plots shows that results for the NIIPP and Dc-Eutrophication

processes are quite close.

The mean time to the kth failure (after the (k-l)st failure)

is the reciprocal of the parameter (N-k+l)cp in Equation (9.1), i.e.,

1
E[XkI - (N-k+l ' k = 1,2,..., (9.8)

or

1(99)
E[Xk] = (31.2-k+l)0.00685"

The values for k= 1,2,...,31 were computed and are shown in

Table 9.1. As was pointed out in Section 4.2, the MTTF for the

N(t) process does not exist due to the fact that the distribution I
of Xk is improper. For the sake of comparison, however, we use

the inverse transformation of the mean value function to get the

estimate of time to kth failure as follows.

Sk m (k)

1 _ln(l-k/a)

- 0 .0 0 5 7 9 2n(l-k/33.99) , k=l,2,....

Hence, we get

X k k-l (9.10)

76

NTDS (n 26)
40 , I I 1

A A
a =3 =0O0579
N 31.2 0=0.00685

30-

0

w
205

LiL
0

c vDe-Eutrophication ProcessLii

CD7

,0

0 50 100 150 200 250 300
TIME(AYS)

FIGURE 9.1 Plots of the NTDS data and the estimated
mean value functions M^,,t) and rn(t)

77

. k.. . . .

TABLE 9. 1

Comparison of Rc:sults Based on the NHPP and the

De-Eutrophication Models

A

ACTUAL FAILURE TIME ESTIMAThD FAILURE TIME (DAYS), Xk

ERROR NO. (DAYS) (Basea on 26 observations)
(k) NHPP Jelinski-Moranda

(k) xk) ______jModel
1 9 5.156 4.679
2 12 5.315 4.834
3 11 5.483 S
4 4 5.663 5.177
S 7 5.855 5.367
6 2 6.061 5.572
7 5 6.281 5.793
8 8 6.518 6.032
9 S 6.774 6.292

10 7 7.05 6.576
11 1 7.351 6.886
12 6 7.677 7.227
13 1 8.035 7.603
14 9 8.427 8.021
is 4 8.859 8.488
16 1 9.338 9.011
17 3 9.872 9.604
18 3 10.471 10.281
19 6 11.147 11.06
20 1 11.916 11.966
21 11 12.799 13.034
22 33 13.824 14.312
23 7 15.028 15.868
24 91 16.461 17.803
25 2 18.197 20.276
26 1 20.342 23.546

27 87 23.062 28.074
28 47 26.624 34.758
29 12 31.489 45.62
30 9 38.539 66.357
31 135 49.686 121.655

A A

TotaI No. of Errors (34) a = 34 N = 31.2
A A

Failure Rate : 0.00!79 = 0.00685

No. of temiiingj; rrors (S) a 26 8 N 26 5.2

78

The values of xk for k=1,2,...,31 were computed from Equation

(9.10) and are given in Table 9.1. As a criterion for comparing

the results from the two models, we choose the sums of squares of

the differences between the actual values xk and the estimated

values Xk for k= 1,2,...,26 and for k=27,28,...,31, i.e., we

use

26
Fit = E (Xk-Xk)2 ,

k=1

and
.31 2

Prediction = (.3k)

k=27

We get Fit =7169 and Prediction =8220 for the De-Eutrophication

process. For the N(t) process we get Fit =7180 and

Prediction = 13034. For this criterion, the De-Eutrophication pro-

cess gives better results than the N(t) process. However, NHPP

gives better results when the criterion is the number of errors

remaining at t=250 days. These results are summarized in

Table 9.1.

Next we compare the accuracy of estimates (N,cp) with that

of (a,b) by obtaining joint confidence regions for (N,p) and (a,b).

The joint 100(1-a)% confidence regions for (a,b) are given

by Equations (4.26) and (4.27) and were shown in Figure 8.4 for

a =.05, .25 and .50.

To obtain the 100(l-u)% joint confidence regions for N

and p, we use the same result that was used to get the confidence

regions for (a,b), viz.

79

XnL(N, cIx) -InL(N,p x) 12 (9.11)

Substituting in Equation (9.11) the expression for XnL(N,plx)

from Equation (9.2), we get

n n
n~ntp+ Z tn(n--k+l) - S (N-k+l)pxk = c, (9.12)

k=l k=1

where

c = £nL(N,p Ix)- 12 (9.13)

Equation (9.12) defines a joint 100(1-a)% confidence region for N

and p. Plots of such regions for ae=.05, .25 and .50 are shown

in Figure 9.2. A comparison of these plots with those in Figure 8.4

shows that for tne same c, the range of N is somewhat smaller than

that of a while the range of cp is larger than that of b.

Next we compare the reliability predictions based on the two

models. The reliability function after n errors is

Rn+ (x) =l-P[(n+l)st error will occur by time xln errors

have occurred) , (9.14)

For the De-Eutrophication process of Equation (9.1), Equation (9.14)

becomes

Rn+ 1 (x) = e-(N-n)px (9.15)

Since after n= 26 , N 31.2 , 0..0685 , we have

27x) - e(31.2-26) (0.00685)x
R 27 (x) e

or

R = 0356x (9.16)

80

CONFIDENCE [' GIONS
(NTDS n= 26)

A
N = 31.2
A

80- 5% =0.00685

75%

w 50%
I-
w N
< 40-

20-

0 I
0 0.003 0.006 0.009 0.012 0.015

PARAMETER

riguric 9.2 joint conf idence regions for N

and cp (NTDS Data)

8].....

For the NIPP, the reliability function from Equation (3.19) is

_e - s _ e-b(s+x)]

RXn+1 is (xis) = ee

Since after n=26 , a-=33.99 , b=- 0.00579 , we get

e33.99(e (0. 00579) (250) e-(0.0057 9)(250+x)j

RX27 IS 2 6 (x1250) =e

or

33.99-e (.00579)250 (-e- 00579x

RX27 (x1250) =e

or
-x25) 7.993 000579x

27 Is(x1250) e" (l-e - 0 ") . (9.17)

Plots of k27 (x) and RX (x1250) for various values

of x are shown in Figure 9.3. Also shown are the reliability

functions (x) and RX (x1540) computed from the data for
32 31

the first 31 failures given in Table 9.1. The reliability after

n= 31 is monotonically higher than that after n= 26. Also, the

predictions from NHPP are somewhat more conservative than those

from the De-Eutrophication process. This is what would be expected

because of the larger and more accurate estimates of the number of

errors remaining in the system when the" 'NIPP model is employed.

82

1i -.

0.6

0:3

--- De-Eutrophi-

0.2- cation

10 20 40 60 80 100
TIME (DAYS)

Piyurc 9.3 Plots of Reliability Functions Based on N11PP

and Dc-Eutrophication moacis.

83

10. CONCLUSIONS

In this report we proposed a simple but very versatile model

for analyzing failures in large scale software systems. The

model was justified on the basis of reasonable and realistic

assumptions about the nature of the failure phenomenon. Specific-

ally, the model (Section 2) is based on a non-homogeneous Poisson

process (NH-PP) with a mean value function m(t) = a(l - e).

The choice of the form of this mean value function was also

justified.

The parameters of this model are a and b, where a is the

expected number of failures that will be encountered if the

system were to be used for a long time and b is the error detec-

tion rate per error.

Several useful quantitative measures were proposed (Section

3) for assessing software performance. These measures are the

number of failures by time t, number of errors remaining in the

system at t, software reliability, etc. Models were also de-

veloped for computing these measures from actual failure data.

A methodology for obtaining the maximum likelihood estimates

of a and b was presented (Section 4) for the cases when the data

is given as failure counts or as times between failures. A

goodness-of-fit test based on the Kolmogorov-Smirnov statistic

was developed (Section 5) to check the adequacy of the fitted

model.

84

Failure data from two DOD systems were analyzed (Sections

7 and 8) using the methodology presented here (Section 6). Re-

suits of the analyses and a limited comparative study (Sectionr 9) indicate that the NHPP model seems to do quite well in ex-

plaining the failure occurrence phenomenon. Applications of

this model to several other data sets, not reported here, also

yielded satisfactory results.

The model developed in this report is applicable after the

system error occurrence rate begins to decline. At present, all

available models share this restriction. Efforts are under way

to develop a 3-parameter NIIPP model which will be applicable

during the integration phase. Also, the parameters cannot be

estimated without available data. Work is continuing on the

development of a Bayesian methodology which will permit deter-

mination of a and b when limited data is available.

85

REFERENCES

1. Abramowitz, M. and Stegun, I.7, , Handbook of Mathematical
Functions, Dover Publications, fnc., 1965.

2. Allen, A.O., Probability, Statistics and QueueinTheor,
Academic Press, 1978.

3. Angus, J.E., Schafer, R.E., and Sukert, A., "Software Reli-
ability Model Validation," Proceedings 0f Annual Reli.ability
and Maintainability Symposium, San Francisco, California,

January 1980, pp. 191-193.

4. Barlow, R.E. and Proschan, F., Statistical Theory of Reli-
ability and Life Testing: Probability Models, Holt, Rinehart
and Winston, Inc., 1975.

5. Basin, S.L., Estimation of Software Error Rate Via Capture-
Recapture Sampling, Science Applications, Inc., Palo Alto,
California, .1974.

6. Boehm, B.W., "Software Engineering," IEEE Trans. on Computers,
Vol. C-25, No. 12, December 1976, pp. 1226-1241.

7. Brooks, W.D. and Motley, R.W., Analysis of Discrete Software
Reliability Models, IBM, Final Technical Report, RADC-TR-
80-84, (in print).

8. Brown, J.R. and Lipow, M., "Testing for Software Reli-
ability," Proceeding, International Conference on Reliable
Software, Los Angeles, April 1975, pp. 518-527.

9. Brown, M., "Statistical Analysis of Non-Homogeneous Poisson
Processes," in Stochastic Point Processes, edited by P.A.W.
Lewis, Wiley, 1972, pp. 67-89.

Jt0. Buck, R.C., Advanced Calculus, McGraw-Hill Book, Co., 1956.

11. Cox, D.R. and Lewis, P.A.W., The Statistical Analysis of
Series of Events, Methuen, London, 1966.

12. Cox, D.R. and Miller, H.D., The Theory of Stochastic Pro-
cesses, Wiley and Sons, Inc., 1965.

13. Crow, L.H., "Reliability Analysis for Complex, Repairable
Systems," Reliabilityand Biometry, edited by F. Proschan and
R.J. Serfling, SIAM, 1974, pp. 379-410.

14. Dickson, J.D., iesse, J.L., Kientz, A.C. and Shooman, M.L.,
"Quantitative Analysis of Software Reliability," Proceedinqs,
Annual Reliabi lity and Maintainability Symp o-ium, Now York,
January 1972, pp. 43-157.

86

15. Donelson, J., III, Duane's Reliability Growth Model as a
Non-Homogeneous Poisson Process, IDA Log. No. HQ76-18012,
Paper P-1162, December, 1975.

16. Duane, J.T., "L. irning Curve Approach to Reliability Moni-
toring," IEEE Trans. Aerospace, Vol. 2, April 1964, pp. 563-566.

17. Endres, A., "An Analysis of Errors and Their Causes in Sys-
tem Programs," Proceedings International Conference on Reli-
able Software, Los Angeles, California, April 1975, pp. 327-336.

18. Feller, W., An Introduction to Probability Theory and Its
Applications, 2nd Ed., Vol. I, Wiley, 1957.

19. Feller, W., An Introduction to Probability Theory and Its
Applications, Vol. II, Wiley, 1966.

20. Finkelstein, J.M., "Confidence Bounds on the Parameters of
the Weibull Process," Technometrics, Vol. 18, No. 1, March
1976, pp. 115-117.

21. Forman, E.H. and Singpurwalla, N.D., "An Empirical Stopping
Rule for Debugging and Testing Computer Software," Journal
of the American Statistical Association, Vol. 72, No. 360,
December 1977, pp. 750-757.

22. Fries, M.J., Software Error Data Acquisition, Boeing
Aerospace Co., Final Technical Report, RADC-TR-77-130,

April 1977, AD A039-916.

23. Goel, A.L., Summary of Technical Progress: Bayesian Software
Reliability Prediction Models, RADC-TR-77-112, Syracuse
University, March 1977, AD A039-022.

24. Goel, A.L., "Reliability and Other Performance Measures of
Computer Software," Proceedings, First International Confer-
ence on Reliability and Exploitation of Computer Systems,
Wroclaw, Poland, September 1979, pp. 23-31.

25. Goel, A.L., "A Software Error Detection Model with Applica-
tions,"Journal of Systems and Software, (to appear), 1980.

26. Goel, A.L. and Okumoto, K., An Imperfect Debugging Model
for Software Reliability, Final Technical Report, Syracuse

University, RADC-TR-78-155, Vol. 1 (of 5), July 1978, AD A057-8 7 9.

27. Goel, A.L. and Okumoto, K., Bayesian Software Correction
Limit Policies, Final Technical Report, Syracuse University,
RADC-TR-78-155, Vol. 2 (of 5), July 1978, AD A057-8 72.

28. Goel, A.L. and Okumoto, K., "An Analysis of Recurrent Soft-
ware Failures in a Real-Time Control System,"Proceedings
Annual Technical Conference, ACM, Washington, D.C.# December 1978,
pp. 496-500.

87

I

#D-AD" 186 SYRACUSE N4IV N Y DEPT OF INDUSTRIAL ENGINEERING AND--ETC F/G 12/1
A TIME DEPENOENT ERROR DETECTION RATE MODEL FOR SOFTWARE PERFOR-ETC(U)
MAY 80 A L GOEL, K OKUMOTO F30602-78-0351

I4NCLASSIFIED RADC-TR-80-179 NL

I lflflflg

I~ mEEEE

__________ 0 3 11111220MIROP R U IIIIH

MICROCOPY RESOLUTION TESI CHART

29. Goel, A.L. and Okuinoto, K., "A Time Dependent Error Detection
Rate Model for a Large Scale Software System," Proceedings
yhird XIS7-Japan Computer Conference, San Francisco, California,
October, 1978, pp. 35-40.

30. Goel, A.L. and Okumoto, K.,"A Markovian Model for Reliability
and Other Performance Measures of Software Systems,"Pro-
ceedings National Computer Conference, New York, Vol. 48,

June 1979, pp. 769-774.

31. Jelinski, Z. and Moranda, P., "Software Reliability Research,"
in Statistical Computer Performance Evaluation, W. Freiberger
(ed.), Academic Press, 1972, pp. 465-484.

32. Lewis, P.A.W., Implications of a Failure Model for the Use
and Maintenance of Computers," Journal of Applied Probability,
Vol. 1, 1964, pp. 347-368.

33. Lewis, P.A.W. and Shedler, G.S., "Statistical Analysis of
Non-stationary Series of Events in a Data Base System," IBM
Journal of Research and Development, Vol. 20, September 1976,
pp. 465-482.

34. Lipow, M., Estimation of Software Package Residual Errors,
TRW Software Series Report, TRW-SS-72-09, Redondo Beach,
California, 1972.

35. Lipow, M., Maximum Likelihood Estimation of Parameters of
a Software Time-To-Failure Distribution, TRW Systems Group
Report, 2260.1.9-73B-15, Redondo Beach, California, 1973.

36. Littlewood, B. and Verrall, J.L., "A Bayesian Reliability
Growth Model for Computer Software," Applied Statistics,
Vol. 22, No. 3, 1973, pp. 332-346.

37. Littlewood, B., "A Reliability Model for Systems with Markov
Structure," Applied Statistics, Vol. 24, No. 2, 1975, pp. 172-177.

38. Littlewood, B., "A Semi-Markov Model for Software Reliability
with Failure Costs," Proceedings MRI Symposium on Software
Engineering, New York, March 1976, pp. 281-300.

39. Maguire, B.A., Pearson, E.S. and Wynn, A.H.A., "The Time
Intervals Between Industrial Accidents," Biometrika, vol. 39,
1952, pp. 168-180.

40. Mann, N.R., Schafer, R.E. and Singpurwalla, N.D., Methods
for Statistical Analysis of Reliability and Life Data, Wiley,
1974.

41. Miller, D.R., "Order Statistics, Poisson Processes and Repair-
able Systems," Journal of Applied Probability, Vol. 13, 1976,
pp. 519-529.

88

42. Mills, II.D., On the Statistical Validation of Computer Programs,
IBM Federal Systems Division, Gaithersbury, Maryland, Report
72-6015, 1972.

43. Miyamoto, I., "Software Reliability in On-Line Real Time
Environment," Proceeding International Conference on Reli-
able Software, Los Angeles, California, April 1975, pp. 194-203.

44. Moeller, S.K., "The Rasch-Weibull Process," Scandanavian
Journal of Statistics, Vol. 3, 1976, pp. 107-115.

45. Moranda, P.B., "Prediction of Software Reliability During
Debugging," Proceedings Annual Reliability and Maintainability
Symposium, Washington, D.C., January 1975, pp. 327-332.

46. Musa, J.D., "A Theory of Software Reliability and Its Appli-
cation," IEEE Trans. on Software Engineering, Vol. SE-I,
No. 3, September 1975. pp. 312-327.

47. Nelson, E.C., Softwarc Reliability, TRW Software Series,
TRW-SS-75-05, Redondo Beach, California, 1975.

48. Okumoto, K. and Goel, A.L., Classical and Bayesian Inference
for the Software Imperfect Debugging Model, Syracuse University,
Final Technical Report, RADC-TR-78-155, Vol. 2 (of 5), July
1978, AD A05 7-871.

49. Okumoto, K. and Goel, A.L., Availability Analysis of Software
Systems Under Imperfect Maintenance, Syracuse University,
Final Technical Report, RADC-TR-78-155, Vol. 3 (of 5), July
1978, AD A057-872.

50. Okumoto, K. and Goel, A.L., "Availability and Other Per-
formance Measures of Software Systems Under Imperfect Main-
tenance," Proceedings Computer Software and Applications Con-
ference, Chicago, Illinois, November 1978, pp. 66-71.

51. Proschan, F., "Theoretical Explanation of Observed Decreasing
Failure Rate," Technometrics, Vol. 5, No. 3, August 1963,
pp. 375-383.

52. Pyke, R., "Markov Renewal Processes: Definitions and Pre-
liminary Properties," Annals of Mathematica]. Statistics,
vol. 32, 1961, pp. 1231-1242.

53. Rohatgi, V.K., An Intrcduction to Probability Theory and
Mathematical Statistics, Wiley, 1976.

54. ROSS, S.M., Aplied Probability Models with optimization
Applic .tions, Holdcn-Day, 1976.

55. Roussas, G.G., A First Course in Mi,thematical Statistics,
Addison-wsley, 1973.

b9

56. Rye, P., et al., Soft,.rdre Systems 1Xevelomitent: A CSDL Project
Hi tory, The Charles S tLtrt Draper ILaboratory, Inc., Final
Technical Report, RADC-TR- 7 7 -2].3, June 3977, AD A042-186.

57. Schafer, R.E., et al., validation of Software Reliability
Models, Huges Aircraft Co., Final Technical Report, RADC-TR-
78-147, June 1979, AD-7A072-I13.

58. Schick, G.J. and Wolverton, R.W., "Assessment of Software
Reliability," llth Annual Meeting of the German Operations
Research Society, DGOR, 11amburg, Germany, September 1972;
also in Proceedings Operations ReS.carch, Physica-Verlag,
Wurzberg-Wicn, 1973, pp. 395-422.

59. Schick, G.J. and Wolverton, R.W., "An Analysis of Computing
Software Reliability Models," IEEE Trans. of Software
Engineering, Vol. SE-4. No. 2, March 1978, pp. 104-120.

60. Schneidewind, N.F., "Analysis of Error Processes in Computer
Software," Proceeding International Conference on Reliable
Software, Los Angeles, California, April 1975, pp. 337-346.

61. Shooman, M.L., "Probabilistic Models for Software Reliability
Prediction," Statistical Computer Performance Evaluation,
W. Freiberger (Editor), Academic Press, 1972, pp. 485-502.

62. Snyder, D.L., Random Point Processes, Wiley, 1975.

63. Sukert, A., A Software Reliability Modellina Study, In-house
Technical Report, RADC-TR-76- 247 , August 1976, AD A030-437.

64. Sukert, A.N., "An Investigation of Software Reliability
Models," ProceedincL Annual Reliability and Maintainability
Syposium, Philadelphia, Pennsylvania, January 1977, pp. 478-484.

65. Sukert, A. and Goel, A.L., "Error Modelling Applications in
Software Quality Assurance," Proceedings Software Quality and
Assurance Workshop, San Diego, California, November 1978,
pp. 33-38.

66. Sukert, A. and Goel, A.L., "A Guidebook for Software Reli-
ability Assessrment," Proceedings Annual Reliability and Main-
tainzabilitv Symp1osium, Sz~n Francisco, California, January
1980, pp. 188-190.

67. Thayer, T.A., Lipow, M. and Nelson, E.C., Software Reli-
abilityStudy, TRUT Defen. -: & Space Systems Group, I:inal
Technical Report, RADC-T-7G- 2 33, Augu-st 3.976, AD A030- 7 98.

68. Trivedi, A.K. and Shooman, M., coinutcr Soft~wre TIC] ibilitv:
Many Statc Markov Modc¢] inq ,chf:i.ue5, Polytechmic I.nstitute

of New York, Interim epourt, k'/DC-'-75 IEA9, July 1975,
AD 014-824.

90

69. Wagoner, W.L., The Final Report on A Software Reliability
Measurement Study, Technology Division, The Aerospace Corp.,
Report No. TOR-0074 (4112)-l, El Segundo, California, August
1973.

70. Willman, H.E., Jr., et al., Software Systems Reliability:
A Raytheon Project History, Raytheon Co., Final Technical
Report, RADC-TR-77-188, June 1977, A040992.

71. Yau, S.S. and MacGregor, T.E., On Software Reliability Model-
ing, Interim Report, Northwestern University, RADC-TR-79-129,
June 1979, A072380.

91

APPENDIX A

DESCRIPTION OF SOFTWARE FAILURE MODELS

A.l Stochastic Models for Times Between Software Failures

One of the earliest studies to develop a model for software

reliability was undertaken by Jelinski and Moranda (Reference 31).

They developed a model for the time between software failures,

making the assumption of a uniform failure rate. In other words,

the software error detection rate at any time is assumed to be

proportional to the current error content (the number of remaining

errors) of the tested program. It is also assumed that one error

is removed/eliminated whenever a software failure occurs. If N

is the initial number of errors in the system, the number of errors

remaining after (i-1) errors are removed will be (N-(i-l)). If c

is the proportionality constant, the hazard rate or the error

detection rate befween the (i-l)st and the ith failures is

z(x i) = cp[N-(i-l)] .

Then the Probability Density Function (pdf) of Xi , the time

between the (i-l)st and the ith failures, is

-cp[N- (i-l)]x.
f(xi) = p[N-(i-I)] • e 1*

This constitutes the basic model of the so-called De-Eutrophication

process. Statistical inference about the unknown parameters, N

and tp, was discussed by Lipow (Reference 35) who obtained the

maximum likelihood estimates and the variance-covariance matrix

for N and c. Forman and Singpurwalla (Reference 21) also proposed

a method based on solving the difference equations in N and t.

92

IToranda (Reference 45) modified the De-Eutrophication process

by asfuming the tailure rate to decrease geometrically rather than

decreasing in constant steps. lie further incorporated the class

of non-fatal errors, while the failure rates of successive errors

form a geometric progression whose initial term is D and whose

ratio is k. This is a superposition of a geometric De-Eutrophication

process and a Poisson process with parameter 8 . The model can

now describe thc burn-in phase by a De-Eutrophication process as

well as the steady state by a Poisson process. For a combination

Geometric De-Eutrophication and Poisson Model, the failure rate

between the (i-l)st and the ith failures is given by

ki-i1
z(x i) =k D+ e .

Schick and Wolverton (Reference 58) developed a model whose

hazard rate depends on the testing time as well as the number of

remaining errors. They assumed that the hazard rate is a linear

function of testing time, i.e.,

z(xi) = c[N-(i-l)]x i

where N and p represent the initial error content and a pro-

portionality constant, respectively. It turns out that the distri-

bution of the time between the (i-l)st and the ith failures is a

Rayleigh distribution with parameter cp[N-(i-l)]/2. The estimates

of N and p can be obtained by the method of maximum likelihood.

Schick and Wolverton (Reference 59) postulated another model in

which the hazard rate is a parabolic function, instead of a linear

93

function, of testing time x. The hazard function for this model

is

z (x i =p (N- (i-1)1 (-ax 2 +bxi + C) , a,b, c > 0.

This yields an increasing number of errors while a debugging effort

is in full force, then reaches a maximum, and finally declines as

the number of remaining errors is drastically reduced.

A Bayesian approach was taken by Littlewood and Verrall

(Reference 36) to develop a software reliability growth model. The

underlying distribution of thd time between the (i-l)st and the

ith failures is an exponential distribution with rate % ; i.e.,

-xx.

f(x i IX) = ke

The failure rate k is treated as a random variable with a Gamma

distribution with shape parameter a and scale parameter *(i) , an

increasing function of i. The function 4 (i) is assumed to be

known although it may differ from program to program. Assuming a

uniform prior distribution of oi, one can construct a data-dependent

pdf of the time to next failure. Thus, the pdf of Xn+ 1 for given

n observations x 1 ,x 2 ,..., xn is given by

f (x I - n'n 1 nYl

n+l X]X 2 '''Xn) x n+l+# (n) X 1 +4(n) n7

[y + log(4(n) A

where
n

,= n og (i)+l

i=l *(i)+l

94

It was shown that the reliability improves if *(i) increases more

rapidly with i than a linear function of i. A goodness-of-

fit test was also presented and its use shown by choosing *(i)

to be a polynomial in i.

Most of the stochastic models treat the software system as

a black-box. Littlewood (Reference 37) studied a model in which

he incroporated the internal structure of the software system. He

assumed that the software was composed of several sub-programs

which worked in continuous time by Markov switching among them-

selves and that the failures occurred according to a Poisson pro-

cess. The failures in the overall program were then shown to

follow, asymptotically, a Poisson process whose failure -rate can

be computed from the failure rates of the individual structural com-

ponents. By considering the distribution of the cost associated

with failures, it was shown by Littlewood (Reference 38) that the

distribution of the total vector cost due to failures of subprograms

during (O,t) is, asymptotically, multivariate normal.

A key assumption made in most of these models is that the

errors are removed with certainty when detected. However, as

pointed out in Miyamoto (Reference 43) and Thayer, et al. (Refer-

ence 67), in practice errors are not always corrected when detected.

The above models do not provide an explicit solution for such

situations.

To overcome this limitation, Goel and Okumoto (References

26, 28, 30) developed an Imperfect Debugging Model (IDM). In

this model, the number of errors in the system at time t, X(t),

95

is treated as a Markov process whose transition probabilities

are governed by the probability of imperfect debugging. Times

between the transitions of X(t) are taken to be exponentially

distributed with rates dependent on the current error content of

the system. Fxpressions are derived for performance measures such

as the distribution of time to a completely debugged system,

distribution of the number of remaining errors and software reli-

ability. Okumoto and Goel (Reference 48) discussed methods for

obtaining the mr, ximum likelihood estimates and confidence regions

for the parameters N (the initial error content), q (probability

of imperfect debugging), and X (failure rate per error).

The reliability models based on time between software failures

are summarized in Table A.l.

9[

_ !' 96

4

0)

0

+H

4-)~
+

a)f r-- F-

+ I I

T-4 w. I- - C40
;K4 0

H x x

H~~ ~ 04 0 g (4

0i 0 04 Vd*4.

4-- 9 . - r.a
V) to I 104 0II4

u .. 4 r4- .,4- (C -)
0 x4 X0 4- P X

(LI 0d 0 1 o u > ') (

4) r Z 4 0 0 0 0 0-r
0 a 0 (IS 4-)) 0 Nm: 4 -
0L rq w 4 9- 0- Hr 4

o U 4J 0 41 (a ~ p a p ta 4
U) 0) 0 0 00 93

ri~4~ N4-i (a w u U 10 0.
44~J A 04 0)1- I -ri a) 0
0a 044 0)04 0 > a) 4 Ic 40

H g H 0 z Q -4 04 u N i
(2 a U) $ - 0) q p ~ 00 0- U .0)

0 J r. 4J 0 41- -q

0~ .(44 4 0 1) 4J 1

w -q E) W *d (D tn WU as 41 01)04

1) 0 01 It ~u) k W 4. -4 00
a 0) (D w a)0 -.4) a) O,.14

97

A.2 Stochastic Models Based on Number of Failures

One of the earliest models in this category was proposed by

Shooman (Reference 61). He analyzed the actual error data from func-

tional tests after different debugging times, and used the history of

these errors to specify the error detection rate function, p (T)

Hence, the total number of errors removed during r months of

debugging is taken to be

=so p(x)dx.

If we assume that the total number of errors in the program, ET')
is constant, and that no new errors are added during debugging,

then c (T) - ET/IT as T i ,where IT is the number of instructions

in the program. Then the number of errors remaining at time T

can be expressed as

Cr(T E =T/I - ()
r T T

Assuming that the software failures occur due to the occasional

traversing of a portion of the program which has one or more errors,

the hazard rate in an operational phase for software which has i

been debugged for r months must be proportional to the number of

errors remaining at time r, i.e.,

z(t) = Kc r (T)

= [E T/I T - P(x)dx]
0

where K is an arbitrary constant. Since z(t) is constant over

the operational time t, the reliability is simply

98

R(t) = e ()It

and the mean time to failure is

MTTF = 1/ [Kcr ()]

A similar approach was taken by Musa (Reference 46) to develop an

execution time model. If we denote the number of inherent errors

in the program by N0 and the net number of errors corrected during

the execution time T by 11() , then the number of errors remain-

ing at time T is

M(T) = N0 - (')

He assumed that (i) the errors in the program are independent of

each other and are distributed at any time with a constant average

occurrence rate per instruction throughout the program, (ii) various

types of instructions are reasonably well mixed, and (iii) the

execution time between failures is large compared to average instruc-

tion execution time. The hazard rate of the errors is then given

by

z() = KfT(r)

= KfN0 - xfT ()

where K is the error exposure ratio and f is the line.&r execution

frequency. Furthermore, assuming that the error correction rate

d_(_ is equal to the error exposure rate, z(), he obtaincd thedt

hazard rate

99

I -7

z(T) = KfN0 eKf.

Hence for execution time T' , projected from T, the reliability

is given by

R(TT) = -Z (-r) r~= e.

This is the basic execution time model. The model was then gen-

eralized by introducing an error reduction factor, B , and a testing

compression factor, C. The relationship between the execution

time and calendar time was also investigated by incorporating the

limitations on the availability of resources (failure identification

personnel, failure correction personnel, and computer time).

Taking a different approach, Schneidewind (Reference 60) studied

the number of errors detected during a time interval and the collection

of error counts over a series of time intervals, by assuming that

the failure process is a non-homogeneous Poisson process with an

exponentially decaying intensity function

d(i) = e- , , > 0 , i= 1,2,...

As an extension to his earlier models, Moranda (Reference 45)

developed a geometric-Poisson model assuming that the number, Ni t

of errors occurring in the ith interval is governed by a Poisson

distribution with parameter Xk

100

A.3 Availability Models

As mentioned earlier, an operational software system is sub-

ject to random failures caused by software errors in the system.

The maintenance/debugging activity is then undertaken whenever a

software failure occurs. The system goes through a maintenance

phase to remove the cause of failure and becomes operational as

soon as the maintenance activity is over. Trivedi and Shooman

(Reference 68) developed an availability model by considering the

sequence of operational and maintenance (up and down) phases of the

software system. The distribution of times in both states was

taken to be exponential with a state dependent parameter.

A generalized model for the operational and maintenance phases

was developed by Okumoto and Goel (References 49, 50). In this

model, the time to remove an error is assumed to follow an exponential

distribution with a rate dependent on the current error content of

the system. The sequence of operational and maintenance states

of the software system is formulated as a semi-Markov process and

expressions are obtained for system availability and other per-

formance measures. They also developed a nomogram to explore the

trade-offs between the expected time to a specified number of

remaining errors, which determines the software operational per-

formance, and the manpower requirements to achieve the desired

objective.

101

A.4 Combinatorial Models

A.4.1 Capture-recapture sampling

Mills (Reference 42) formulated the problem of estimating the

number of errors in a program by using a technique callea capture-

recapture sampling.' In this technique, a program containing an unknown

number nI of indigenous errors is deliberately 'modified' by

seeding a set of known errors, n . These errors could be then

discovered in successive tests, each of which is considered a trial.

Then, the joint probability of finding X1 indigenous errors and

Xs seeded errors is given by a hypergeometric distribution.

Lipow (Reference 34) modified this problem by taking into consid-

eration the probability, q, of finding an error (of either kind) in

any test of the software. Then, for N statistically independent

tests the probability of iinaing XI indigenous and X seeded errors

is given by

PN(XI=XI I Xs=xs ; q,n In S)

+x N-X xi-x nI ns)

(I +'Xs) q .(-q) (n I+ n s

The maximum likelihood estimates of q and nI are given by

xi+ Xs

q N

and

102

Pr
x I]

-s n s if x I + x >1

0 ifx+x=0

xin s if xs =0.

Basin (Reference 5) suggested a somewhat different procedure,

the so-called two-state edit procedure, where one programmer searches

for defects and records nI errors out of a total of N unknown

indigenous errors. A second programmer edits the program inde-

pendently and finds, say, r errors. The two lists of errors are

then compared. The probability that the same k errors are found

by the two programmers is given by a hypergeometric distribution.

A.4.2 Input data domain considerations.

Software reliability assessment based on program structure has

been proposed by Nelson (Reference 47). The reliability of a computer

program here is defined as the probability of the program being

correct on any given run. Data sets are used to execute the pro-

gram structure. Each input data set proceeds through a sequence

of segments, called a logical path, with a branch to a new segment

taking place at the exit of each segment. The input data space, E,

is partitioned into a small number of disjoint subsets, zj I

j= 1,2,...,k, to produce the operational protile probability aistri-

bution, P(zj). If a program is executed a total of n times and

f. failures are observed out of n. runs using points from zj

then an estimate of program operational usage reliability is given

by

103

f.

R 1- - P(z)
n .

Further, assuming that the test cases (i.e. , n executions of the

program) are identically proportional to P(z) an estimate of

the observed (or assessed) reliability is given by

2 n)

The techniques for developing a set of test cases which serve

to accomplish a certain objective, e.g. assurance that each and

every structural element would be exercised at least once during

the execution of the program with the complete set of test cases,

was discussed by Brown and Lipow (Reference 8). They used this

technique to show its applicability on two fairly small programs.

104

A.5 Model Comparisons

Very few studies have been reported that compare the per-

formance of various models. A comprehensive study for this objective

was undertaken by Sukert (References 63, 64). In this study he

analyzed the data from a large command and control system by using

several software failure models. As a result of this study, he

pointed out the limitations and difficulties in using these models.

A limited comparison of the models from the quality assurance

viewpoint has been reported by Sukert and Goel (Reference 65). A

description and comparison of models has been given by Yau and

MacGregor (Reference 71).

Schick and Wolverton (Reference 59) compared various models

and indicated that the model they had developed (Reference 58),

seems to perform better than others. Recently Angus, Schafer and

Sukert (Reference 3) and Schafer, et al. (Reference 57) completed

a comparative investigation of several models from the validation

point of view. They analyzed several failure data sets and pointed

out the difficulties of parametric estimation and other limitations

of these models.

105

MISSION
Of

Rom Air Developmnt Center
RWV ptam and execute XLem~cA, dev~exut, teat and
a etected acqwLUZtion p amgto n.6 wv wo~. oj Cowhand, comftwL
comncatioms and intettcgemue (C) atwtu,* Tecdnwi~
And evngJeeAtng aLuppoott withen aU oi teehnicAt competence
ia psrovided to MSV AtgM f& (FOa) a4d otkhj ESP
eteato. The plAipaLehnA s4iom o'eu6 4A~e
co#mw9404A edecC'wmzneci gw~idance and contAot, 6U&-
tiu~Ane 06 g4owxd and "wapace objectA, LitteU~gmne data

ctoltion and handting, iftJo'zW.iof Ayatem teeu~oogq,
iu~oaphAic WPtopag *ix, 4otid Att 6ciejme6. iiic'w ve

phgL~ ad ~eet'n~c ~e~ab~kyMaintiw6b~Ug and

